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1. Linear Regression

Regression

Regression is a technique used for estimating relationship
between variables.
The regression is said to be linear if the relationship is
linear.
Often we want to predict a variable Y (the dependent
variable) in terms of another variable X (the independent
variable). X is usually not random.
For a fixed value x of X , Y may take several values, and
hence is a random variable denoted by Y |x (Y given that
X = x). The mean of Y |x is denoted by μY |x .
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1. Linear Regression

Linear Regression

The linear curve of regression of Y on X is given by

μY |x = β0 + β1x

Given a set of data (xi , yi) where xi is an observed value of
X and yi is the value of Y |xi for i = 1, · · · ,n. The simple
linear regression model is given by

yi = β0 + β1xi + εi

εi are called the residuals.
εi = μY |x − yi and

∑n
i=1 εi = 0.

The values (xi , yi) can be illustrated by a scattergram.
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1. Linear Regression

β0 and β1 are estimated by the method of least-squares
which is done by minimizing SSE =

∑n
i=1 ε

2
i .

Let b0 and b1 be estimates for β0 and β1 respectively.
Then,

b1 =
n
∑n

i=1 xiyi −
�

∑n
i=1 xi

� �

∑n
i=1 yi

�

n
∑n

i=1 x2
i −

�

∑n
i=1 xi

�2 ,

and
b0 = y − b1x
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1. Linear Regression

Example

Let X denote the number of lines of executable SAS code, and
let Y denote the execution time in seconds. The following is a
summary information:

n = 10
10
∑

i=1

xi = 16.75
10
∑

i=1

yi = 170

10
∑

i=1

x2
i = 28.64

10
∑

i=1

y2
i = 2898

10
∑

i=1

xiyi = 285.625

Estimate the line of regression.
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1. Linear Regression

b1 =
10(285.625)− (16.75)(170)

10(28.64)− (16.75)2
= 1.498

and

b0 =
170

10
− 1.498

16.75

10
= 14.491
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1. Linear Regression

Properties of least-squares estimators

Since b0, b1 and εi vary with the data, we can define B0,
B1 and Ei the corresponding random variables. Ei is
assumed to be normally distributed with mean 0 and
variance σ2.
We assume the following:

Yi are independent and normally distributed.
The mean of Yi is β0 + β1xi .
The variance of Yi is σ2.

We are interested in studying B0 and B1 (distribution,
confidence intervals and hypothesis testing).

(Review properties of summation page 388).
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1. Linear Regression

Distribution of B0 and B1

Using summation properties, we can prove that B1 is
normally distributed with parameters

E [B1] = β1 and V [B1] =
σ2

∑n
i=1(xi − x)2

B0 is also normally distributed with parameters

E [B0] = β0 and V [B0] =

∑n
i=1 x2

i

n
∑n

i=1(xi − x)
σ2

Since σ2 is usually unknown, we use an estimate s2.
An unbiased estimator for σ2 is given by

S2 =
SSE

n − 2
=

∑n
i=1 ε

2
i

n − 2
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1. Linear Regression

Another way of writing the formulas - summary-p.393

Let Sxx =
∑n

i=1(xi − x)2 =
�

n
∑n

i=1 x2
i −

�

∑n
i=1 xi

�2�

/n,

Syy =
∑n

i=1(yi − y)2 =
�

n
∑n

i=1 y2
i −

�

∑n
i=1 yi

�2�

/n and

Sxy =
∑n

i=1(xi − x)(yi − y) =
�

n
∑n

i=1 xiyi −
∑n

i=1 xi
∑n

i=1 yi

�

/n.

B1 =
Sxy

Sxx
with variance V [B1] =

σ2

Sxx
.

B0 = Y − B1X with variance V [B0] =

∑n
i=1 x2

i σ
2

nSxx
.

SSE =
∑n

i=1 ε
2
i = Syy − b1Sxy

S2 = SSE
n−2 , estimator for σ2.
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1. Linear Regression

Inferences on β1

Since B1 ∼ N(β1, σ2/Sxx), then B1−β1

σ/
p

Sxx
∼ N(0,1).

Since σ2 is usually unknown, we estimate it by S2. In this
case, B1−β1

S/
p

Sxx
follows a T distribution with n − 2 degrees of

freedom.
A 100(1− α)% confidence interval on β1 is given by

B1 ± tα/2S/
p

Sxx

In hypothesis testing (H1 : β1 6= β0
1, or β1 < β0

1 or
β1 > β0

1), the test statistic is

T =
B1 − β0

1

S/
p

Sxx

(Usually we take β0
1 = 0 if we want to study if there is any

significance relation between X and Y )
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1. Linear Regression

Example

Consider the previous example and suppose we want to see if
there is a relation between X and Y with a significance level
α = 5%. There is a relation between X and Y if and only if
β1 6= 0, which is our alternative hypothesis. Let H0 : β1 = 0. We
have a two tailed test b1 = 1.498,

Sxx =
�

n
∑n

i=1 x2
i −

�

∑n
i=1 xi

�2�

/n = 0.584 Syy = 8 and
Sxy = 0.875. Therefore, SSE = 8− 1.498(0.875) = 6.69 and
s2 = SSE /8 = 0.84 The test statistic is

T =
b1 − 0
p

S2/Sxx
=

1.498
p

0.84/0.584
= 1.25

t0.025 = 2.306. Hence, we do not reject the hypothesis. We
cannot conclude that there is a relation between X and Y .
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1. Linear Regression

Inferences on β0

Since B0 ∼ N(β0, σ2
∑n

i=1 x2
i /nSxx), then

B0 − β0

σ
Ç

∑n
i=1 x2

i /nSxx

∼ N(0,1)

After estimate σ2 by s2, we get that

B0 − β0

S
Ç

∑n
i=1 x2

i /nSxx

follows a T distribution with n − 2 degrees of freedom.
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1. Linear Regression

Inferences on β0

A 100(1− α)% confidence interval on β1 is given by

B0 ± tα/2S

√

√

√

n
∑

i=1

x2
i /nSxx

The test statistic for hypothesis testing is

T =
B0 − β0

0

S
Ç

∑n
i=1 x2

i /nSxx
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1. Linear Regression

Example

A 95% C.I. on β0 in our previous example is given by

14.491± 2.306
Æ

0.84(28.64)/5.84

(14.491− 4.68,14.491 + 4.68)

(9.81,19.181)

We are 95% sure that the true regression line crosses the
y−axis between the points y = 9.81 and y = 19.81.
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1. Linear Regression

Inferences about estimated mean and single predicted
value

Given a new value x of X , we want to estimate the values
μY |x and Y |x .
A point estimate for μY |x and Y |x is given by

Ŷ |x = μ̂Y |x = b0 + b1x

A 100(1− α)% C.I. on μY |x is given by

μ̂Y |x ± tα/2S

√

√

√
1

n
+

(x − x)2

Sxx

A 100(1− α)% C.I. on Y |x is given by

Ŷ |x ± tα/2S

√

√

√

1 +
1

n
+

(x − x)2

Sxx
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