Lectures

MVE055 / MSG810
Mathematical statistics and discrete mathematics

Moritz Schauer
Last updated August 29, 2022

GU \& Chalmers University of Technology

Teachers

$\begin{array}{ll}\text { Moritz Schauer } & \text { Instructor } \\ \text { Room: } & \text { H3029 } \\ \text { E-mail: } & \text { smoritz@chalmers.se }\end{array}$

Erik Jansson
E-mail:
Teaching assistant
erikjans@chalmers.se

Samuel Winqvist Teaching assistants
E-mail:
samwin@chalmers.se

Time table (1st week)

Lecture	Monday	HB1	$15-17$
Exercise	Tuesday	ML14, ML15,	$10-12$
Lecture	Wednesday	HB3	$10-12$
Exercise	Thursday	ML14, ML15	$10-12$

Student representatives

oskararnudd@gmail.com	Oskar Arnudd
axel.carlstedt99@gmail.com	Axel Carlstedt
tim.le.karlsson@gmail.com	Tim Karlsson
cajsa.t@hotmail.se	Cajsa Tellström
alice.thornell@yahoo.se	Alice Thornell

Course overview

https://chalmers.instructure.com/courses/20092

Examination

"För godkänd på kursen krävs godkänd på de tre grupparbetana samt godkänd på skriftlig tentamen. Betyget på kursen baseras på betyget på tentan."

Examination consists of two parts.

Exam:

- Exam takes place on campus. Will look similar to the last exam.

3 group assignments:

- Due 2022-09-19, 2022-10-10, 2022-11-07.
- First assignment: "Skiplist".
- Groups of up to four students.
- \llcorner Find yourself a group on canvas "Project groups".
- One student hands in for the group on canvas.
- Required for passing but does not affect course grade.

Course content

In probability theory we construct and analyse mathematical models for phenomena that exhibit uncertainty and variation. Highlight: Markov chains.

In statistics we observe data and we want to infer the probabilistic model or parameters of such a model: inverse probability.

Generating functions allow to solve recursive equations.
The law of large number describes what happens if you perform the same experiment a large number of times.

Regression to find linear relationships between inputs/explanatory variables and outputs/explained variables.

Example: Probability vs statistics

What is the probability to throw 10 times heads in a row with a fair coin.

This is the 10th time you throw head in a row... is that coin fair!?

Probabilities

Probabilities of events

- Probability is a numerical measure of how likely an event is to happen.

- Probability is a proportion, a number between 0 and 1 . Notation

$$
\mathrm{P}(\text { something that can happen })=\text { a probability. }
$$

E.g.

$$
\mathrm{P}(\text { coin lands heads-up })=\frac{1}{2} .
$$

Equally likely outcomes

What is probability? (How do we assign probability?)

- A classical and useful view considers equally likely outcomes. Then

$$
\mathrm{P}(A)=\frac{\text { number of outcomes for which event } A \text { occurs }}{\text { total number of outcomes }}
$$

- Probability to throw an odd number with a fair die.

$$
\mathrm{P}(A)=\frac{|\{1,3,5\}|}{|\{1,2,3,4,5,6\}|}=\frac{3}{6}=\frac{1}{2}
$$

All outcomes: "1,2,3,4,5,6". Event: $A=\{1,3,5\}$ ("odd number') occurs for outcomes $1,3,5$.

Frequentist interpretation of probability

- Sometimes it is not reasonable to assume that all outcomes are equally likely.
- The frequentist interpretation of probability: Suppose we repeat a random experiment many times under identical conditions. As the number of repetitions n grows, we observe that the proportion n_{A} / n of times that an event A occurs converges to a number.

This number is the probability of A, or as formula

$$
\frac{n_{A}}{n} \rightarrow \mathrm{P}(A), \text { where } n \rightarrow \infty
$$

Example: With a fair six-sided die, we observe the proportion of times where $A=\{2,4,6\}$ occurs converge to $\frac{1}{2}$.

Sample spaces

Outcomes

In probability theory we consider experiments which have non-deterministic, variable or random outcomes. For example

1. Roll a die and count the eyes.
2. Throw a handful of coins and count the heads.
3. Examine a unit from a manufacturing process.
4. Measure the round-trip time (ping) of a connection.

The result of the experiment is called outcome ω (utfall). The set of possible outcomes is called the sample space Ω (utfallsrummet).
\hookrightarrow Sets Ω and their elements ω.

Sample spaces

- $\Omega=\{1,2,3,4,5,6\}$.
- $\Omega=\{$ (head, head),(head, tail),(tail, head),(tail, tail) $\}$ (for 2 coins).
- $\Omega=\{$ defect, intact $\}$.
- $\Omega=[0, \infty)$ (seconds).

Events

We group outcomes into events.
An event A is a set of outcomes, that is, a subset of the sample space Ω.

Example for events:

1. $A=\{1,3,5\}$, that is "my die shows an odd number".
2. $A=\{($ head,head $),($ tail, tail $)\}$, "both coins show the same face".
3. $A=\{$ defect $\}$, the "unit is broken".
4. $A=\{x: x \geqslant 0.5\}$, round-trip-time larger than 0.5 s .

An event A occurs if any of the outcomes $\omega \in A$ occurs in the experiment.
\hookrightarrow Sets Ω, their elements ω and subsets A, B, \ldots

Outcome and sample space

Event, outcome and sample space

The outcome ω is the result of a random experiment, and the set of all possible outcomes Ω is called the sample space.

Events

An event is a collection (a set of) different outcomes. The event A, as a set of outcomes, is therefore a subset of the sample space Ω.

We like events because the probability of a single outcome might be too small or zero.

Event, outcome and sample space

Event A, outcome $\omega \in A$ and sample space Ω

And some other outcome $\omega^{\prime} \notin A$.

Overview: Intersection, union and complement

For events A and B we have defined:
Complement, A^{c}
Set of all outcomes ω not contained in $A . A^{c}=\Omega \backslash A$.
Union, $A \cup B$
Set of all outcomes ω in A or B.
Intersection, $A \cap B$
Set of all outcomes ω in A and B.
$A^{c}, A \cup B, A \cap B$ are also events. \varnothing and Ω are also events, the impossible event and the sure event.

Mutually exclusive events
If $A \cap B=\varnothing$ then A and B are mutually exclusive events.

Complement

The complement of a A are all outcomes not in A.

$$
A^{c}=\Omega \backslash A .
$$

In the example with the die: Here $A=\{1,3,5\}$. So if the die shows a 2 , then $A^{c}=\{2,4,6\}$ happened.

Union

If we have events, A and B we can define $A \cup B$, the union of A and B.

- $A \cup B$ occurs if A or B occur (or both).

Example: $\{2,4,6\} \cup\{1,2,3\}=\{1,2,3,4,6\}$ are disjoint.

Intersection

The intersection $A \cap B$ are all elements both in A and B.

- So for $A \cap B$ to occur, both A and B need to occur.
$A \cap B=\varnothing$ means that A and B exclude each other.

Set inclusion

Disjoint sets

$$
A \cap B=\varnothing
$$

Example: The set $\{2,4,6\}$ and the set $\{1,3,5\}$ are disjoint.

The empty set \varnothing

Permutations and combinations

Permutation

A specific order of a number of objects.
$(1,3,2,5,6,4)$ is a permutation of the numbers 1 to 6 .

Combination

A selection of objects without regard for their order.
$\{1,3,5\}$ is a combination of 3 the of the numbers 1 to 6 .

Note $(1,2) \neq(2,1)$ but $\{1,2\}=\{2,1\}$.

Permutations and combinations

Multiplication principle

If there are a ways to make a choice and there are b ways to make a second choice, then there are $a b$ ways to make a combined choice.

If you draw cards from a deck of 52, then you can choose between 52 cards for your first draw, between the remaining 51 cards for your next draw, etc.

Factorial

For $n \in \mathbb{N}$ define $n!=n \cdot(n-1) \cdot(n-2) \cdots \cdot 2 \cdot 1$ and $0!=1$.
n ! is read " n -factorial".

$$
4!=4 \cdot 3 \cdot 2 \cdot 1=24
$$

Calculate the number of r-permutations

Number of r-permutations

The number of ways we can choose r objects in order out of a total of n distinct objects is given by

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!}
$$

Example: Draw a ordered sequence of 5 cards from a poker set of 52 cards.

$$
{ }_{52} P_{5}=\frac{52!}{47!}=52 \cdot 51 \cdot 50 \cdot 49 \cdot 48=311875200
$$

Calculate the number of combinations

Number of combinations

The number of ways we can choose r objects out of a total of n distinct objects, ignoring their order, is given by

$$
{ }_{n} C_{r}=\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

- ${ }_{n} C_{r}$ is usually called binomial coefficient.

Example: Draw five cards from a poker set of 52 cards. 2598960 combinations are possible:

$$
\binom{52}{5}=\frac{52!}{5!(52-5)!}=\frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=2598960
$$

Compare ${ }_{n} P_{r}=\frac{n!}{(n-r)!}$

