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Time table (1st week)

Lecture Monday HB1 15-17

Exercise Tuesday ML14, ML15, 10-12

Lecture Wednesday HB3 10-12

Exercise Thursday ML14, ML15 10-12
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Student representatives

oskararnudd@gmail.com Oskar Arnudd
axel.carlstedt99@gmail.com Axel Carlstedt
tim.le.karlsson@gmail.com Tim Karlsson
cajsa.t@hotmail.se Cajsa Tellström
alice.thornell@yahoo.se Alice Thornell
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Course overview

https://chalmers.instructure.com/courses/20092
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Examination

“För godkänd på kursen krävs godkänd på de tre grupparbetana
samt godkänd på skriftlig tentamen. Betyget på kursen baseras på
betyget på tentan.”

Examination consists of two parts.

Exam:

• Exam takes place on campus. Will look similar to the last
exam.

3 group assignments:

• Due 2022-09-19, 2022-10-10, 2022-11-07.
• First assignment: “Skiplist”.
• Groups of up to four students.
• ë Find yourself a group on canvas "Project groups".
• One student hands in for the group on canvas.
• Required for passing but does not affect course grade. 5



Course content

In probability theory we construct and analyse mathematical
models for phenomena that exhibit uncertainty and variation.
Highlight: Markov chains.

In statistics we observe data and we want to infer the probabilistic
model or parameters of such a model: inverse probability.

Generating functions allow to solve recursive equations.

The law of large number describes what happens if you perform
the same experiment a large number of times.

Regression to find linear relationships between inputs/explanatory
variables and outputs/explained variables.
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Example: Probability vs statistics

What is the probability to throw 10 times heads in a row with a fair
coin.

This is the 10th time you throw head in a row... is that coin
fair!?
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Probabilities



Probabilities of events

• Probability is a numerical measure of how likely an event is to
happen.

• Probability is a proportion, a number between 0 and 1.
Notation

Ppsomething that can happenq “ a probability.

E.g.

Ppcoin lands heads-upq “
1

2
.

Figure from https://mathwithbaddrawings.com/.
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Equally likely outcomes

What is probability? (How do we assign probability?)

• A classical and useful view considers equally likely outcomes.
Then

PpAq “
number of outcomes for which event A occurs

total number of outcomes

• Probability to throw an odd number with a fair die.

PpAq “
|t1, 3, 5u|

|t1, 2, 3, 4, 5, 6u|
“

3

6
“

1

2

All outcomes: "1,2,3,4,5,6". Event: A “ t1, 3, 5u (“odd
number”) occurs for outcomes 1, 3, 5.
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Frequentist interpretation of probability

• Sometimes it is not reasonable to assume that all outcomes
are equally likely.

• The frequentist interpretation of probability: Suppose we
repeat a random experiment many times under identical
conditions. As the number of repetitions n grows, we observe
that the proportion nA{n of times that an event A occurs
converges to a number.

This number is the probability of A, or as formula

nA

n
Ñ PpAq,where nÑ8

Example: With a fair six-sided die, we observe the proportion of
times where A “ t2, 4, 6u occurs converge to 1

2 .
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Sample spaces



Outcomes

In probability theory we consider experiments which have
non-deterministic, variable or random outcomes. For example

1. Roll a die and count the eyes.

2. Throw a handful of coins and count the heads.

3. Examine a unit from a manufacturing process.

4. Measure the round-trip time (ping) of a connection.

The result of the experiment is called outcome ω (utfall). The set
of possible outcomes is called the sample space Ω (utfallsrummet).
ë Sets Ω and their elements ω.
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Sample spaces

• Ω “ t1,2,3,4,5,6u.

• Ω “ t(head, head),(head, tail),(tail, head),(tail, tail)u (for 2
coins).

• Ω “ tdefect, intactu.

• Ω “ r0,8q (seconds).
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Events

We group outcomes into events.

An event A is a set of outcomes, that is, a subset of the sample
space Ω.

Example for events:

1. A “ t1,3,5u, that is “my die shows an odd number”.

2. A “ t(head,head),(tail,tail)u, “both coins show the same face”.

3. A “ tdefectu, the “unit is broken”.

4. A “ tx : x ě 0.5u, round-trip-time larger than 0.5s.

An event A occurs if any of the outcomes ω P A occurs in the
experiment.

ë Sets Ω, their elements ω and subsets A, B, ...
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Outcome and sample space

Event, outcome and sample space
The outcome ω is the result of a random experiment, and the set
of all possible outcomes Ω is called the sample space.

Events
An event is a collection (a set of) different outcomes. The event
A, as a set of outcomes, is therefore a subset of the sample space
Ω.

We like events because the probability of a single outcome might be
too small or zero.

14



Event, outcome and sample space

A

Ω

ω

ω1

Event A, outcome ω P A and sample space Ω

And some other outcome ω1 R A.
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Overview: Intersection, union and complement

For events A and B we have defined:

Complement, Ac

Set of all outcomes ω not contained in A. Ac “ ΩzA.

Union, AYB

Set of all outcomes ω in A or B.

Intersection, AXB

Set of all outcomes ω in A and B.

Ac, AYB, AXB are also events. ∅ and Ω are also events, the
impossible event and the sure event.

Mutually exclusive events
If AXB “ ∅ then A and B are mutually exclusive events.
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Complement

A

Ac

The complement of a A are all outcomes not in A.

Ac “ ΩzA.

In the example with the die: Here A “ t1, 3, 5u. So if the die shows
a 2, then Ac “ t2, 4, 6u happened.
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Union

A B

If we have events, A and B we can define AYB, the union of A
and B .

• AYB occurs if A or B occur (or both).

Example: t2, 4, 6u Y t1, 2, 3u “ t1, 2, 3, 4, 6u are disjoint.
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Intersection

A B

pAXBqc

The intersection AXB are all elements both in A and B.

• So for AXB to occur, both A and B need to occur.

AXB “ ∅ means that A andB exclude each other.

19



Set inclusion

A B

A Ă B.
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Disjoint sets

A B

AXB “ ∅.

Example: The set t2, 4, 6u and the set t1, 3, 5u are disjoint.
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The empty set ∅
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Permutations and combinations

Permutation
A specific order of a number of objects.

p1, 3, 2, 5, 6, 4q is a permutation of the numbers 1 to 6.

Combination
A selection of objects without regard for their order.

t1, 3, 5u is a combination of 3 the of the numbers 1 to 6.

Note p1, 2q ‰ p2, 1q but t1, 2u “ t2, 1u.
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Permutations and combinations

Multiplication principle
If there are a ways to make a choice and there are b ways to make
a second choice, then there are ab ways to make a combined
choice.

If you draw cards from a deck of 52, then you can choose between
52 cards for your first draw, between the remaining 51 cards for
your next draw, etc.

Factorial
For n P N define n! “ n ¨ pn´ 1q ¨ pn´ 2q ¨ ¨ ¨ ¨ 2 ¨ 1 and 0! “ 1.
n! is read “n-factorial”.

4! “ 4 ¨ 3 ¨ 2 ¨ 1 “ 24
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Calculate the number of r-permutations

Number of r-permutations
The number of ways we can choose r objects in order out of a
total of n distinct objects is given by

nPr “
n!

pn´ rq!

Example: Draw a ordered sequence of 5 cards from a poker set of
52 cards.

52P5 “
52!

47!
“ 52 ¨ 51 ¨ 50 ¨ 49 ¨ 48 “ 311 875 200
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Calculate the number of combinations

Number of combinations
The number of ways we can choose r objects out of a total of n
distinct objects, ignoring their order, is given by

nCr “

ˆ

n
r

˙

“
n!

r!pn´ rq!

• nCr is usually called binomial coefficient.

Example: Draw five cards from a poker set of 52 cards.
2 598 960 combinations are possible:

ˆ

52

5

˙

“
52!

5!p52´ 5q!
“

52 ¨ 51 ¨ 50 ¨ 49 ¨ 48

5 ¨ 4 ¨ 3 ¨ 2 ¨ 1
“ 2 598 960

Compare nPr “
n!

pn´rq!
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