Lectures

MVE055 / MSG810 Mathematical statistics and discrete mathematics

Moritz Schauer Last updated September 5, 2022

GU & Chalmers University of Technology

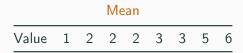
Sample mean

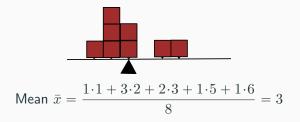
• The (sample) mean, denoted as \bar{x} , can be calculated as

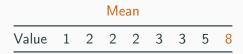
$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i,$$

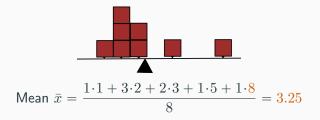
where x_1, x_2, \cdots, x_n are the **n** observed values.

In words: Sum the values of all cases in the data set and divide by the total number of values.









Random variables

Random variables

A random variable is a numeric quantity whose value depends on the outcome of a random experiment.

Example: X is the number of eyes on a 6-sided die.

We denote random variables with capital letters, often \boldsymbol{X} or $\boldsymbol{Y}.$

Examples?

Pair of dice

Throw a pair of dice, count the total number of eyes, call that random variable X. Consider the **event** that X = 7.

Event? What are the actual ω making our event and sample space $\Omega?$ You could take

$$\Omega = \{ \mathbf{\cdot} \mathbf{\cdot}, \dots, \mathbf{i} \mathbf{i} \mathbf{i} \}$$

Then the set of $\omega \in \Omega$ where X = 7 is

$$A = \{ \bullet \bullet \bullet, \bullet \bullet, \bullet \bullet, \bullet \bullet, \bullet \bullet, \bullet \bullet \bullet \}$$

Therefore

$$\mathsf{P}(X=7) = \mathsf{P}(A) = \frac{|A|}{|\Omega|} = \frac{6}{36}$$

Value k	2	3	4	5	6	7	8	9	10	11	12
$\begin{array}{c} Probability \\ P(X{=}k) \end{array}$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

The following holds

$$\mathsf{P}(X = x) = \begin{cases} \frac{6-|k-7|}{36} & \text{if } x \in \{2, \dots, 12\}\\ 0 & \text{otherwise.} \end{cases}$$

Check:

Value x	2	3	4	5	6	7	8	9	10	11	12	other
$\begin{array}{c} Probability \\ P(X{=}x) \end{array}$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$	0

Discrete random variables

A random variable is called discrete if it is integer-valued or otherwise has only a finite or countable number of values.

Example: Y = X/2 is discrete (but can take non-integers such as Y = 5.5 as values.)

Probability mass function

Define the probability mass function f of a discrete random variable \boldsymbol{X} by

$$f(x) = \mathsf{P}(X = x).$$

So f(x) = 0 for all real x such that P(X = x) = 0, okay?

Sometimes we write f_X to talk about X's own probability mass function.

$$f(x) = \begin{cases} \frac{6-|x-7|}{36} & \text{if } x \in \{2,3,\dots,12\}\\ 0 & \text{otherwise} \end{cases}$$

is the probability mass function for the random variable which counts the sum of two dice.

Flip two coins... count the number of heads. Call it X.

$$f(0) = \frac{1}{4}, f(1) = \frac{1}{2} \text{ and } f(2) = \frac{1}{4}$$

 $f(x) = 0 \text{ otherwise if } x \notin \{0, 1, 2\}.$

Flip two coins... count the number of heads.
$$f_X(0) = \frac{1}{4}$$
,
 $f_X(1) = \frac{1}{2}$ and $f_X(2) = \frac{1}{4}$.
What is $P(X \in \{1, 2\}) = P(1 \le X \le 2)$?
 $P(1 \le X \le 2) = f_X(1) + f_X(2) = \frac{3}{4}$
Let $Y = X/2$. What is $P(Y > 0)$?
 $P(Y > 0) = P(1 \le X \le 2) = f_X(1) + f_X(2) = \frac{3}{4}$

Rule

For integer valued X

$$\mathsf{P}(m \leqslant X \leqslant n) = \sum_{k=m}^{n} f(k)$$

for any integers m and n.

Describing distributions

Not all functions are probability mass functions. Because they describe probability distributions, some conditions must hold.

 $f(\boldsymbol{x})$ is a probability mass function if and only if

- $f(x) \ge 0$ for all x.
- $\sum_{\text{all } x} f(x) = 1.$

If somebody gives you a probability mass function, there is a random variable for it.

Distribution function

Distribution function

Assume X is a discrete random variable. Its distribution function is given by

$$F_X(x) = \mathsf{P}(X \leqslant x) = \sum_{\mathsf{all } k \leqslant x} f_X(k),$$

Flip two coins... count the number of heads. Call it X. $f(0) = \frac{1}{4}, f(1) = \frac{1}{2}$ and $f(2) = \frac{1}{4}$. Find F.

$$F(0) = f(0) = \frac{1}{4}$$

$$F(1) = f(0) + f(1) = \frac{1}{4} + \frac{1}{2}$$

$$F(2) = f(0) + f(1) + f(2) = 1$$

Distribution function

What is the probability to throw k times heads in a row with a fair $\operatorname{coin}?$

$$f(0) = \frac{1}{2}, \quad f(1) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}, \quad f(2) = \frac{1}{8}, \quad f(k) = \left(\frac{1}{2}\right)^{k+1}$$

$$\mathsf{P}(X > 0) = f(1) + f(2) + f(3) + \dots = 1 - \mathsf{P}(X = 0) = 1 - f(0)$$

For ${\cal F}(x)$ it holds

- F(x) is increasing
- $F(x) \to 1$ for $x \to \infty$.
- $F(x) \to 0$ for $x \to -\infty$.

Also

•
$$\mathsf{P}(a < X \leq b) = F(b) - F(a).$$

•
$$\mathsf{P}(X > a) = 1 - F(a).$$

• For integer valued random variables: f(k) = F(k) - F(k-1).

We are often interested in the "average" outcome of a random variable.

Expected value

The expected value of a random variable is defined as

$$\mathsf{E}[X] = \sum_{\mathsf{all } k} k f_X(k) \qquad \text{if } X \text{ is discrete,}$$

Data set: grades of 24 students

5, 5, 6, 5, 6, 6, 6, 5, 5, 7, 6, 7, 5, 5, 5, 6, 6, 6, 5, 6, 5, 7, 6, 7

 $\begin{array}{c|c} \textit{Table:} \\ \textit{grade} \\ \textit{fraction of students} \end{array} & \begin{array}{c|c} x_1 = 7 & x_2 = 6 & x_3 = 5 \\ p_1 = 4/24 & p_2 = 10/24 & p_3 = 10/24 \\ \textit{Average One can write the average in different forms} \end{array}$

Average =
$$\frac{5+5+6+\dots+5+7+6+7}{24}$$

$$=\frac{7\cdot 4+6\cdot 10+5\cdot 10}{24}=7\cdot \frac{4}{24}+6\cdot \frac{10}{24}+5\cdot \frac{10}{24}=\sum_{i=1}^{3}x_{i}\cdot p_{i}$$

The expected value of a discrete random variable \boldsymbol{X} with finitely many outcomes can also be written as

$$\mu = \mathsf{E}[X] = \sum_{\mathsf{all } k} x_k \cdot \underbrace{\mathsf{P}(X = x_k)}_{f(x_k)}$$

$$= x_1 \cdot \mathsf{P}(X = x_1) + x_2 \; \mathsf{P}(X = x_2) + \dots + x_n \cdot \mathsf{P}(X = x_n)$$

Here x_i are the *n* possible outcomes and $P(X = x_i)$ are the probabilities of each outcome.

Expected value

Flip two coins... count the number of heads.

 $f(0) = \frac{1}{4}, f(1) = \frac{1}{2} \text{ and } f(2) = \frac{1}{4}$ $\mathsf{E}[X] = 0 \cdot \frac{1}{4} + 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} = 1$

For the expected value,

- $\mathsf{E}[a] = a$.
- $\mathsf{E}[aX] = a\mathsf{E}[X].$
- $\mathsf{E}[aX+b] = a\mathsf{E}[X] + b.$
- $\mathsf{E}[X+Y] = \mathsf{E}[X] + \mathsf{E}[Y].$

Here $X \mbox{ and } Y$ are any two random variables and $a \mbox{ and } b$ are constants.

If we transform the random variables by a function \boldsymbol{h} we have:

Theorem \heartsuit

$$\mathsf{E}[h(X)] = \sum_{\mathsf{all} \ k} h(k) f(k)$$

Coin example (with h(x) = x/2):

$$\mathsf{E}[X/2] = \frac{0}{2} \cdot f_X(0) + \frac{1}{2} \cdot f_X(1) + \frac{2}{2} \cdot f_X(2) = \frac{1}{2}$$
$$= (\mathsf{E}[X])/2$$

Common discrete distributions

The Bernoulli distribution describes a random experiment that can either succeed (with probability p) or fail (with probability 1 - p.) Suppose we make a random experiment which succeeds with probability p and set

$$X = \begin{cases} 1, & \text{if the experiment succeeds} \\ 0, & \text{in case of failure.} \end{cases}$$

We have f(1) = p and f(0) = 1 - p.

Sometimes useful to write as $f(k) = p^k (1-p)^{1-k}$ for $k \in \{0,1\}.$

Bernoulli distribution

A random variable X is Bernoulli distributed if it has probability mass function f(1) = p and f(0) = 1 - p and = 0 otherwise. We write $X \sim \text{Ber}(p)$.

Expected value: E[X] = p.

Examples?

The binomial distribution describes the probability of having exactly k successes in n independent Bernoulli trials with probability of success p.

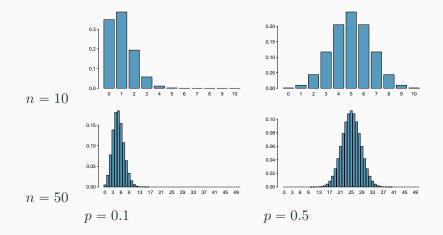
If X is binomial with parameters n and p we write:

 $X \sim \operatorname{Bin}(n, p)$

Expected value: E[X] = np.

Ha, the sum of two coins with sides 0 and 1 is $\mathrm{Bin}(2,0.5)$ distributed.

The binomial distribution



The binomial distribution describes the probability of having exactly k successes in n independent Bernoulli trials with probability of success p.

If X is binomial with parameters n and p we write:

 $X \sim \operatorname{Bin}(n, p)$

Binomial distribution

A random variable \boldsymbol{X} is binomial distributed with parameters $\boldsymbol{n},\boldsymbol{p}$ if

$$\mathsf{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k} \qquad \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

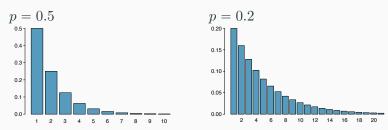
Sum of binomial distributed random variables.

If $X_1 \sim Bin(n, p)$ and $X_2 \sim Bin(m, p)$ are independent, then $X_1 + X_2 \sim Bin(m + n, p)$.

("Dropping m items, couting the broken ones, dropping n more items, counting the additional broken ones is the same as dropping m + n items..")

- The experiment consists of a series of independent Bernoulli trials with probability of success equal to p.
- The random variable \boldsymbol{X} denotes the number of trials needed to get the first success.
- \boldsymbol{p} is called the parameter of X.

The geometric distribution describes the probability distribution of the number of trials needed k to get the first success, for a single event succeeding with probability p. (k-1 failures and 1 success.)



Geometric distribution

A random variable \boldsymbol{X} is geometrically distributed with parameters \boldsymbol{p} if

$$\mathsf{P}(X = k) = (1 - p)^{k-1}p, \quad k = 1, 2, \dots$$

We write $X \sim \text{Geom}(p)$.

Expected value: $E[X] = \frac{1}{p}$.

Variance

Variance and standard deviation

Variance

The variance of a random variable is defined as

$$\mathsf{V}(X) = \mathsf{E}[(X - \mu)^2],$$

where $\mu = \mathsf{E}[X]$ is the expected value of X.

In words, this is the expected squared deviation of the mean. The variance can be calculated by

$$\mathsf{V}(X) = \sum_{\mathsf{all } x} (x - \mu)^2 f(x)$$

Sometimes it is easiest to compute $V(X) = E[X^2] - \mu^2$.

The standard deviation of a random variable X is defined as $\sigma = \sqrt{\mathsf{V}(X)}.$

σ has the same units as X.

For the variance

- V(a) = 0.
- $V(aX) = a^2 V(X)$.

•
$$\mathsf{V}(aX+b) = a^2 \mathsf{V}(X).$$

• V(X + Y) = V(X) + V(Y), if X and Y are independent.

Here X and Y are two random variables and a and b are constants.