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Sample mean



Sample mean

e The (sample) mean, denoted as z, can be calculated as

n
. it x2t-+ Ty 1
xr = = - Z L,
n =
where 21,29, -+, x, are the n observed values.

In words: Sum the values of all cases in the data set and divide
by the total number of values.



Sample mean

Mean

Value 1 2 2 2 3 3 5 6

11+32+23+1.5+1-6 _3
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Sample mean

Mean

Value 1 2 2 2 3 3 5 8

1-1 24+ 2. 1- 1-8
Mean z = ks +83+ Shis = B2




Random variables



Random variables

Random variables

A random variable is a numeric quantity whose value depends on
the outcome of a random experiment.
Example: X is the number of eyes on a 6-sided die.

We denote random variables with capital letters, often X or
Y.

Examples?



Pair of dice

Throw a pair of dice, count the total number of eyes, call that
random variable X. Consider the event that X = 7.

Event? What are the actual w making our event and sample space
Q7 You could take
Q= {00 ... B

Then the set of w € Q where X =7 is
A = {08, (&), (6, ), B0, B3}

Therefore A 6

Value k 2 3 4 5 6 7 8 9 10 11 12

Probability =~ 1 2 3 4 5 6 5 4 3 2 1
P(X=k) 36 36 36 36 36 36 36 36 36 36 36




Pair of dice

The following holds

6=lk=7l ifref{2,...,12
P(X = ) = e if x {.,..., }
0 otherwise.
Check:
Value z 2 3 10 11 12 other
Probability =1 2 3 4 5 6 5 4 3 2 1 0
P(X=z) 36 36 36 36 36 36 36 36 36 36 36




Discrete random variables

Discrete random variables

A random variable is called discrete if it is integer-valued
or otherwise has only a finite or countable number of values.

Example: Y = X /2 is discrete (but can take non-integers such as
Y = 5.5 as values.)



Probability mass function

Probability mass function

Define the probability mass function f of a discrete random
variable X by

So f(x) = 0 for all real x such that P(X = z) = 0, okay?

Sometimes we write fx to talk about X's own probability mass
function.



Sum of two dice

0 otherwise

6-le—Tl i g
f(x)_{ 2 ifre{2,3,...,12}

is the probability mass function for the random variable which
counts the sum of two dice.



Two coins

Flip two coins... count the number of heads. Call it X.

f(0) =, f(1) = 5 and f(2) = 3
f(z) = 0 otherwise if = ¢ {0, 1, 2}.
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Flip two coins... count the number of heads. fx(0) = {,

fx(1) =3 and fx(2) = 1.
What is P(X € {1,2}) = P(1 < X < 2)?

PL< X <2) = fx(1) + fx(2) = 5

Let Y = X /2. What is P(Y > 0)7

PY>0)=P1<X<2) =fx(1)+fx(2) =

Rule
For integer valued X

Pm<X<n)= ), f(k)
k=m

for any integers m and n.

4
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Describing distributions




Probability mass function

Not all functions are probability mass functions. Because they
describe probability distributions, some conditions must hold.

f(zx) is a probability mass function if and only if

e f(z) =0 for all z.
o %f(:n):l.

If somebody gives you a probability mass function, there is a
random variable for it.

12



Distribution function

Distribution function

Assume X is a discrete random variable. Its distribution function
is given by

Fx(@)=P(X <2)= Y fx(b),

all k<z

Flip two coins... count the number of heads. Call it X.

f(0) =1, f(1) =3 and f(2) = 1. Find F.

F(0) = £(0) = }
F() = £(0) + £(1) = } + }
F(2) = £(0) + f(1) + £(2) = 1
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Distribution function

What is the probability to throw k times heads in a row with a fair

coin?
L=k w-(3)
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Distribution function

For F(z) it holds

e F(x) is increasing

F(
° F(x)—»lfor:n—»oo.
F(

z) — 0 for x — —o0.
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Distribution function

Also
e Pla< X <b)=F(b) — F(a).
e P(X >a)=1—F(a).

e For integer valued random variables: f(k) = F(k) — F(k —1).
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Expected value

We are often interested in the “average” outcome of a random
variable.

Expected value
The expected value of a random variable is defined as

E[X] = Z kfx (k) if X is discrete,
all &
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Recall: the average using fractions

Data set: grades of 24 students

5,5,6,5,6,6,6,5,5,7,6,7,5,5,5,6,6,6,5,6,5,7,6, 7

Table:
grade ag = 7/ x93 =6 x3 =05
fraction of students | p1 =4/24 py =10/24 p3 =10/24
Average One can write the average in different forms

5+5+6+--+5+7+6+7

A _
verage 7
7-446-10+5-10 4
= o =7 ﬂ—FG ﬂ+5 — sz Di
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Expected value

The expected value of a discrete random variable X with finitely
many outcomes can also be written as

p=E[X] =) zp P(X = )
all k ~ ~~ ~
f(zk)

=21 P(X =21) + 22 P(X = 22) + - + 2n - P(X = 2,

Here z; are the n possible outcomes and P(X = x;) are the
probabilities of each outcome.
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Expected value

Flip two coins...

F(0) = 3. /(1)

count the number of heads.

=1and f(2) =

(2
E[X]=0-2+1-1+2. i—l
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Rules for computing expected values

For the expected value,
e E[a] =a.
e E[aX] = aE[X].
e E[aX +b] = aE[X] + D.
o E[X +Y]=E[X]+E[Y].

Here X and Y are any two random variables and a and b are
constants.

21



Transformations

If we transform the random variables by a function h we
have:

Theorem ©
E[A(X)] = )] h(k)f (k)

all &
Coin example (with h(z) = x/2):

E[X/2] = g - fx(0) + % fx(1) + ; fx(2) =3

= (E[X])/2
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Common discrete distributions




Bernoulli distribution

The Bernoulli distribution describes a random experiment that can
either succeed (with probability p) or fail (with probability 1 — p.)
Suppose we make a random experiment which succeeds with
probability p and set

¥ 1, if the experiment succeeds
0, in case of failure.

We have f(1) =pand f(0) =1—p.

Sometimes useful to write as f(k) = p*(1 — p)'=* for
ke {0,1}.
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The binomial distribution

Bernoulli distribution
A random variable X is Bernoulli distributed if it has probability

mass function f(1) = p and f(0) = 1 — p and = 0 otherwise. We
write X ~ Ber(p).
Expected value: E[X] = p.

Examples?
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The binomial distribution

The binomial distribution describes the probability of having exactly
k successes in n independent Bernoulli trials with probability of
success p.

If X is binomial with parameters n and p we write:
X ~ Bin(n,p)

Expected value: E[X] = np.

Ha, the sum of two coins with sides 0 and 1 is Bin(2,0.5)
distributed.
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The binomial distribution
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The binomial distribution

The binomial distribution describes the probability of having exactly
k successes in n independent Bernoulli trials with probability of
success p.

If X is binomial with parameters n and p we write:
X ~ Bin(n,p)

Binomial distribution

A random variable X is binomial distributed with parameters n, p
if
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Sum of binomial distributed random variables

Sum of binomial distributed random variables.

If X1 ~ Bin(n,p) and X3 ~ Bin(m, p) are independent, then
X1 + X2 ~ Bin(m + n, p).

(“Dropping m items, couting the broken ones, dropping n more

items, counting the additional broken ones is the same as dropping
m + n items...")
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Geometric distribution

The experiment consists of a series of independent Bernoulli trials
with probability of success equal to p.

The random variable X denotes the number of trials needed to get
the first success.

p is called the parameter of X.
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The geometric distribution

The geometric distribution describes the probability distribution of
the number of trials needed k to get the first success, for a single
event succeeding with probability p. (k — 1 failures and 1
success.)

p=0.5 p=

0.2
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The geometric distribution

Geometric distribution

A random variable X is geometrically distributed with parameters
p if

PX=k)=(Q—-pFlp, k=12...
We write X ~ Geom(p).

Expected value: E[X] = %.

31



Variance




Variance and standard deviation

Variance

The variance of a random variable is defined as
V(X) = E[(X — ],
where 1 = E[X] is the expected value of X.

In words, this is the expected squared deviation of the mean. The
variance can be calculated by

V(X) = ) (e~ p)?f(z)

all z
Sometimes it is easiest to compute V(X) = E[X?] — u2.

The standard deviation of a random variable X is defined as
o =+/V(X).

o has the same units as X.
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Rules for computing variance

For the variance
e V(a) =0.
e V(aX) = a®V(X).
e V(aX +b) = a®V(X).
o V(X +Y)=V(X)+V(Y),if X and Y are independent.

Here X and Y are two random variables and a and b are constants.
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