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Combinatorics

with replacement  without replacement

as ordered vector n" n(n—1)...(n—r+1) = ,Pr

-1
as unordered set (n * r) (n) = (O
n—1 T

Table 1: How many ways to select r objects from n objects.



We have seen

Probability mass functions f(z) = P(X = x).
Bernoulli — Bernoulli(p): X € {0,1}

e Binomial — Bin(n,p): X € {0,1,...,n}

Normal — N(y,02): X € (—00,00)



What was the mean and the variance of X ~ Bin(n,p)?
E(X) = np. Var(X) = np(1 — p).
Normal approximation of Binomial distribution

If X ~ Bin(n,p), X is approximately normally distributed with
mean np and variance np(l — p),

approx.

X ~ N(npanp(l 7p)),

if both np > 5 and n(1 —p) > 5.
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Discrete distributions today

e Poisson distribution — Poisson(): model the number of events
that occur in a time interval, in a region or in some volume.

e Geometric and negative binomial distribution — nBin(r, p):
The number of trials X in a sequence of independent
Bernoulli(p) trials before r successes occur

e Hypergeometric distribution — Hyp(N, n,r): Draw sample of
n objects without replacement out of N. The random variable
X is the number of marked objects.



Poisson distribution

The Poisson distribution is often used to model the number of
events that occur in a time interval, in a region or in some volume.

(Named after Simeon Denis Poisson, 1781-1840.)

Some examples where this distribution fits well are

e The number of particles emitted per minute (hour, day) of a
radioactive material.

e Call connections routed via a cell tower (GSM base station).



Poisson distribution
X ~ Poisson(p)

A random variable X has Poisson distribution with parameter i if

etk

k'

P(X =k) = ke{0,1,2,...}.

Sum of Poisson distributed random variables.

If X1 ~ Poisson(u1) and Xo ~ Poisson(usg) are independent,
then X7 + X9 ~ Poisson(u; + p2).



Poisson distribution
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Number of chewing gums on a tile is approximately Poisson.



Example

Let X be the number of typos on a printed page with a mean of 3
typos per page. Assume the typos occur independently of each
other.

1. What is the probability that a randomly selected page has at
least one typo on it?

PX>1)=1-P(X=0)=1-f0)=1—¢"3

2. What is the probability that three randomly selected pages have
more than eight typos on it?

In this case A = 9 since we have in average 9 typos on three printed
pages.

P(X >8)=1—P(X <8)~1—0.456 by table Il page 692
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Poisson distribution as limit of a Binomial distribution

The Poisson distribution appears as limit of the Binomial
distribution if n becomes large and p goes to 0:

Theorem
Let n — oo, p — 0, and also np — u. Then for fix £ >0

kef
(W) rra-art oo 01)

Connection to the previous example:

e There is a large number n of atoms in the material and the
probability that an atom decays in a unit of time p is very
small.
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Geometric distribution

The experiment consists of a series of independent Bernoulli trials
with probability of success equal to p.

The random variable X denotes the number of trials needed to get
the first success.

p is called the parameter of X.
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The geometric distribution

The geometric distribution describes the probability distribution of
the number of trials needed k to get the first success, for a single
event succeeding with probability p. (k — 1 failures and 1
success.)
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The geometric distribution

Geometric distribution

A random variable X is geometrically distributed with parameters
p if

PX=k)=1—-pFlp, k=12...
We write X ~ Geom(p).

Expected value: E[X] = %.
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Negative binomial distribution

The number of trials X in a sequence of independent Bernoulli(p)
trials before r successes occur has the negative binomial
distribution.
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Negative binomial distribution
X ~ nBin(r,p)

The random variable X has a negative binomial distribution with
parameter r and p if

k—1
P(X:k):(r_]-)pr(l—p)kr, k:T,T—i-l...

Motivation: Probability of  successes in k trials: (1 —p)*—"p".
The last attempt succeeds. The binomial coefficient gives the
number of ways we assign the remaining r — 1 successes to the
remaining k — 1 trials.
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Hypergeometric distribution

e Suppose we have N objects of which r are “marked".

e Draw sample of n objects without replacement. The random
variable X is the number of marked objects. Then X has
hypergeometric distribution with parameters N, n,r.

e What values can X take? max(0,n+7r— N) <z < min(n,r)
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Hypergeometric distribution
X ~ Hyp(N,n,r)

The random variable X has hypergeometric distribution with
parameters NV, n and r if

(&) (i)
()

P(X =k) = max(0,n + 7 — N) < k < min(n,r)

If n =1 then Hyp(V, 1,7) = Bernoulli(r/N). If N and r are large
compared to n we have Hyp(N,n,r) = Bin(n,r/N).
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Continuous distributions today (all positive)

e Exponential distribution — Exp(\): Time between
calls/visitors/people knocking on your door. (Poisson: How
many ticks. Exponential: time between ticks.)

e Gamma distribution — I'(«, 5): Flexible distribution for
positive random variables.

e x2-distribution — x?(n): Distribution for sum of squares of n
independent N (0, 1) random variables.
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Exponential distribution
X ~ Exp(}\)

The density function of an exponential distribution with rate A or
is given by
f@) =X, >0

or equivalently f(z) = %e‘x/ﬁ where 8 = % is the scale.

E[X] = 8 and Var(X) = 2

The cumulative distribution function is given by

F(z)=1—e2.
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Exponential distribution

Assume objects arrive after exponentially distributed interarrival
times.

A - how many arrivals per time unit.
B - expected waiting time
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Gamma distribution

X ~ Gamma(a, )

A random variable X with density function
1

(a) B>

for 8 > 0 and « > 0 has a Gamma distribution with parameters
shape « and scale 3, or .

xo‘_le_x/ﬂ, x>0

flw) = =

E[X] = @B and Var(X) = a2
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x2-distribution
X ~ x*(n)

The Gamma distribution with parameters § =2 and = Z is
called \? -distribution with n degrees of freedom.

|

E[X] =n and Var(X) = 2n.
Sum of squares

If Z1,..., 7, have standard normal distributions and are

independent, then ZZ + - - 4+ Z2 follow a x? -distribution with n
degrees of freedom.
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