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Central limit theorem/CLT



Recall

If X ∼ N(µ, σ2), then

Z =
X − µ
σ

∼ N(0, 1)

If X1, . . . , Xn ∼ N(µ, σ2) independent, then

X̄(n) ∼ N(µ, σ2/n).

then
X̄(n) − µ
σ/
√
n
∼ N(0, 1)
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Normal approximation of Binomial distribution

If X1 . . . Xn ∼ Ber(p). Then X =
∑
Xi ∼ Bin(n, p).

X is approximately normally distributed

X
approx.∼ N(np, np(1− p)),

Thus again for X̄(n) = 1
n

∑
Xi,

X̄(n) approx.∼ N(p, p(1− p)/n),

or
X̄(n) − p√
p(1− p)/n

approx.∼ N(0, 1)
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Normal approximation
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Central limit theorem

Central limit theorem (CLT)
If X1, . . . , Xn are independent and equally distributed random
variables with expected value µ and variance σ2 <∞, then

P

(
X̄(n) − µ
σ/
√
n
≤ x

)
→ F (x), for n→∞.

where F is the distribution function of N(0, 1).

This means,

• X̄ = n−1
∑n

i=1Xi is approximatively N(µ, SE2)-distributed,
where SE = σ/

√
n is the standard error

for large n.

How large is large? Depends on the distribution of the Xi’s.
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High-school maturity exam in Poland

Histogram showing the distribution of
scores for the obligatory Polish
language test. “The dip and spike that
occurs at around 21 points just
happens to coincide with the cut-off
score for passing the exam"

http://freakonomics.com/2011/07/07/

another-case-of-teacher-cheating-or-is-it-just-altruism/
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Normal probability plot



Normal probability plot

The standard normal distribution function (cdf) is

F (x) =
1√
2π

∫ x

−∞
e−y

2/2dy

It is possible to transform the scaling on the y-axis so that F
becomes a straight line in the plot.
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Normal probability plot

Suppose we have the data x1, . . . , xn and want to see if a normal
distribution is a reasonable model for the data. We can use the
normal probability plot for this.

First we compute the empirical distribution function

F ∗(x) =
1

n

n∑
i=1

I(xi ≤ x)︸ ︷︷ ︸
proportion of values smaller than x

We plot the points F ∗(xj) in the normal probability diagram, and if
the data is normally distributed, these points should lie along a
straight line.
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Normal probability plot

Example: left normally distributed data and and right
exponentially distributed data in normal probability diagram. In
Matlab: normplot.
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Confidence interval



Confidence interval

Confidence interval
If X1, . . . , Xn i.i.d random variables with distribution depending
on a parameter θ, with θ0 being the unknown value. A
100(1− α)% confidence interval for θ with confidence level 1− α
is an interval Iθ = [A,B] computed from the data such that

P(A ≤ θ0 ≤ B) = 1− α.
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Confidence interval for parameter µ of a normal distribution

Let X1, . . . , Xn be independent N(µ, σ2).

Known variance σ2

Iµ = (A,B) =

(
X̄(n) − 1.96

σ√
n
, X̄(n) + 1.96

σ√
n

)
is a confidence interval for µ with confidence level 95%.

Here 1.96 is the 0.975 = (100− 2.5)% quantile of Z ∼ N(0, 1):

P(−1.96 < Z < 1.96) = 0.95.

P(−1.96 <
X̄(n) − µ
σ/
√
n

< 1.96) = 0.95.

P(A ≤ µ ≤ B) = 0.95
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20 confidence intervals for µ, that where each constructed from 20
different samples of 10 N(100, 16)-observations.
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• [A,B] is a random interval, because A and B are random
variables (transformations of the random variables
X1, . . . , Xn).

• Interpretation. Let
x1 = (x11, . . . , xn1),x2 = (x12, . . . , xn2), . . . be repeated
measurements of X1, . . . , Xn. If we make the confidence
interval for θ based on every xi, then 100(1− α)% of these
intervals cover the true value θ0.
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Table 2: Quantiles of the normal distribution

Table gives P(X > λα) = α for X ∼ N(0, 1)

α .1 .05 .025 .01 .005 .001 ... .00001

λα 1.2816 1.6449 1.9600 2.3263 2.5758 3.0902 ... 4.2649
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t(n)-distribution
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Table 3: Quantiles of the t-distribution

Table gives P(X > tα(f)) = α for X ∼ t(f).
α .1 .05 .025 .01 .001

tα(1) 3.0777 6.3138 12.706 31.820 318.31
tα(2) 1.8856 2.9200 4.3027 6.9646 22.327
tα(3) 1.6377 2.3534 3.1824 4.5407 10.215
tα(4) 1.5332 2.1318 2.7764 3.7469 7.1732
tα(5) 1.4759 2.0150 2.5706 3.3649 5.8934
tα(6) 1.4398 1.9432 2.4469 3.1427 5.2076
tα(7) 1.4149 1.8946 2.3646 2.9980 4.7853
tα(8) 1.3968 1.8595 2.3060 2.8965 4.5008
tα(9) 1.3830 1.8331 2.2622 2.8214 4.2968
tα(10) 1.3722 1.8125 2.2281 2.7638 4.1437
tα(15) 1.3406 1.7531 2.1314 2.6025 3.7328
tα(20) 1.3253 1.7247 2.0860 2.5280 3.5518
tα(30) 1.3104 1.6973 2.0423 2.4573 3.3852
tα(40) 1.3031 1.6839 2.0211 2.4233 3.3069
tα(60) 1.2958 1.6706 2.0003 2.3901 3.2317
tα(∞) 1.2816 1.6449 1.9600 2.3263 3.0902 15



Confidence interval for µ of a normal distribution

Let X1, . . . , Xn be independent N(µ, σ2).

Known variance σ2

Iµ =

(
X̄ − zα/2

σ√
n
, X̄ + zα/2

σ√
n

)
is a confidence interval for µ with confidence level 1− α.

Unknown variance σ2

Iµ =

(
X̄ − tα/2(n− 1)

s√
n
, X̄ + tα/2(n− 1)

s√
n

)
is a confidence interval for µ with confidence level 1− α. Here s2

is the sample variance and tα/2(n− 1) are the
(1− α/2)-quantiles of the t(n− 1)-distribution.
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Quiz

x1, . . . , xn are a sample of i.i.d observations with distribution
depending on a parameter θ.

Winnie computes a 95 % confidence interval for θ.

Piglet computes a 90 % confidence interval for θ using the same
data.

Which interval is smallest? Piglet’s 90 % confidence interval.
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Confidence interval for µ from central limit theorem

• By the CLT the sample mean X̄(n) is approximatively
N(µ, σ2/n)-distributed for large n.

• If we have a sample with known variance σ2,

Iµ =

(
X̄ − zα/2

σ√
n
, X̄ + zα/2

σ√
n

)
is a confidence interval for the mean µ with confidence level
1− α.

• If σ is not known we can estimate it by S. For the estimate to
be good, it is important that n is large and the distribution for
Xi is not too heavy tailed.

• Since n is big, we use tα/2(n− 1) ≈ zα/2, so if σ is unknown,
we use

Iµ =

(
X̄ − zα/2

s√
n
, X̄ + zα/2

s√
n

)
.
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Confidence interval for σ2 for the normal distribution

Confidence interval for σ

If X1, . . . , Xn are independent N(µ, σ2) then a confidence interval
with confidence level 1− α for σ is

Iσ =

(√
(n− 1)s2

χ2
α/2(n− 1)

,

√
(n− 1)s2

χ2
1−α/2(n− 1)

)
.

Here χ2
α/2(n− 1) are the (1− α/2)-quantiles of the χ2(n− 1)

distribution.

If Zi are independent N(0, 1), it holds

n∑
i=1

Z2
i

is χ2(n)-distributed
19



χ2(n)-distribution
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Confidence interval for σ2 for the normal distribution

Confidence interval for σ

If X1, . . . , Xn are independent N(µ, σ2) then a confidence interval
with confidence level 1− α for σ is

Iσ =

(√
(n− 1)s2

χ2
α/2(n− 1)

,

√
(n− 1)s2

χ2
1−α/2(n− 1)

)
.

Important: In contrast to the confidence interval for the expected
value, the confidence interval for the variance is very sensitive to
deviations from the normal distribution.
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Summary

For a confidence interval

• for the expected value µ

• of the normal distribution: Slide: confidence interval for µ of a
normal distribution

• Known σ or large n: use confidence interval based on normal
quantiles.

• Small n and unknown σ: use quantiles based on t-distribution.

• of a general distribution

• Large n: use confidence interval based on normal quantiles
(valid approximation by CLT). Slide: Confidence interval for µ
from central limit theorem.

• for the variance σ2

• of the normal distribution: Slide: Confidence interval for σ2 for
the normal distribution.
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X ∼ N(µ, σ2)

µ− 1.96σ x µ+ 1.96σµ
x

P(X ∈ [µ− 1.96σ, µ− 1.96σ]) = 0.95
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CLT: X
(n) approx∼ N(µ,SE2), µ = E[Xi], σ

2 = V(Xi).

µ0 − 1.96 SE x̄(n) µ0 + 1.96 SEµ0
x

P(X
(n) ∈ [µ− 1.96 SE, µ− 1.96 SE]) = 0.95
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Hypothesis tests

An important problem in statistics is to test whether a theory or a
research hypothesis is right or wrong.

Examples of such problems include:

• Does a new drug have any effect? Mean effect > 0

• Do smokers die sooner than non-smokers? Mean life time
difference < 0

• Does the measuring device have a systematic error? Mean
measurement error 6= 0
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Hypothesis tests

Answers the statistical analysis could give are

1. that the research hypothesis is supported by the data (and
possibly a quantification of the degree of support),

2. that the data doesn’t support the hypothesis,

3. a decision rule.
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Example

The length of a certain lumber from a national home building store
is supposed to be 2.5 m.

A builder wants to check whether the lumber cut by the lumber
mill has a mean length different smaller than 2.5 m.

A statistical formulation of this problem is that we want to test the
null hypothesis

H0 : mean length = 2.5m

against the alternative/research hypothesis

H1 : mean length < 2.5m

H1 is actionable knowledge. If H1 is true she needs to write an
angry letter.
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Example

• You have new laboratory equipment to measure the chlorine
content in water and want to check it. You mix water with
true chlorine content 60 (you can do that very precisely), and
take 6 measurements.

• Results of the measurement are x̄ = 59.62 and s2 = 4.6920.

• Assume that the measurements are samples of a random
variable X ∼ N(µ, σ2).

• The question now is whether we can claim that the new
equipment has systematic measurement error, µ 6= 60.
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Setup

A statistical formulation of this problem is that we want to test the
null hypothesis

H0 : µ = 60

against the alternative hypothesis or research hypothesis

H1 : µ 6= 60.

If the test we perform finds that there is a systematic error, H0 is
rejected in favour of H1.

Is H1 actionable knowledge?

Choosing the alternative H1

Choose H1 such if someone would tell you it is true, you can do
something useful with that knowledge!
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µ0−1.96 SE
58.1

x̄(n)

59.62

µ0+1.96 SE
61.9

µ0
60m

x

SE ≈
√

4.6920√
5
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Decisions

The outcome of a hypothesis test can be:

• Reject H0 (accept H1.)

• Action!

• Do not reject H0

• Could be lack of data, or H0 being correct. The question of
H0 or H1 is truly left open. Meh. Should still report it though.
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Decision errors

Decision
fail to reject H0 reject H0

H0 true X Type 1 Error
Truth

H1 true Type 2 Error X

• A Type 1 Error is rejecting the null hypothesis when H0 is true.
We want to avoid that, control the probability for this error.

• A Type 2 Error is failing to reject the null hypothesis when H1

is true.
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Burden of proof

If we again think of a hypothesis test as a criminal trial then it
makes sense to frame the verdict in terms of the null and
alternative hypotheses:

H0 : Defendant is innocent
H1 : Defendant is guilty

Which type of error is being committed in the following
circumstances?

• Declaring the defendant innocent when they are actually guilty

Type 2 error

• Declaring the defendant guilty when they are actually innocent

Type 1 error

Which error do you think is the worse error to make? 33



Statistical reasoning

Classical logic: If the null hypothesis is correct, then these data can
not occur.
These data have occurred.
Therefore, the null hypothesis is false.

Tweak the language, so that it becomes probabilistic... Statistical
reasoning:

If the null hypothesis is correct, then these data are highly unlikely.
These data have occurred.
Therefore, the null hypothesis is unlikely.

Definition
In statistical hypothesis testing, a result has statistical significance
when it is very unlikely to have occurred under the null
hypothesis. So significance corresponds to "statistical evidence
against the null".

The significance level α is the (tolerated) probability of making a
type I error:

P(reject H0 | H0 is true )
(at most)

= α
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About failure to reject H0

If you want to take a decision in the case the test fails to reject H0,
you should compute the type II error probability first. This is
typically difficult.

Therefore we should avoid far reaching decisions if our tests fail to
reject H0.
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Tests from confidence intervals

Data (samples from a distribution with unknown parameter
µ).

Hypothesis about parameter. Here H0 : µ = µ0 and
H1 : µ 6= µ0.

Significance level α, e.g α = 5%.

Decision rule: Compute a (1− α)(= 95%)-confidence interval
[A,B] for the parameter µ. If the µ0 /∈ [A,B], reject H0.

Type 1 error: This rule has type 1 error of 5 %, so this is a valid
test for level α = 5 %.
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Tests with test statistics

Data (samples with unknown population parameter µ).

Hypothesis about parameter. Here H0 : µ = µ0 and
H1 : µ

6=
>
<
µ0.

Significance level α, e.g α = 5%.

Test statistic T : Typically, T comes from an estimator for our
parameter with known distribution under H0.

T =
X̄ − µ0

σ/
√
n

(example)

Decision rule: Reject H0 if the p-value is less than the significance
level α.
or: Reject H0 if the Tobs is in the critical region/rejection region
(see next slide).

Type I error: The type I error for this test is ≤ α. 37



Critical region
The critical region Cα of a test are those values of the test
statistic T for which H0 can be rejected while obeying significance
level α. Typically represented by one or two critical values.

We compute rejection region for the data. We reject H0 if Tobs is
in the rejection region.
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Example: critical region for mean of normal population

We want to use a quantity T that we know the distribution of
under H0, so that we can calculate the critical region.

In case of the normal distribution with known variance

(T =)Z =
X̄ − µ0

σ/
√
n

we know that Z under H0 is N(0, 1)-distributed and

Reject H0 at level α if |Z| > zα/2.
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−|zα/2|
−1.96

Z |zα/2|
1.96

0
x

Rejection region for α = 0.05.

40



−|zα/2|
−1.96

Z |zα/2|
1.96

0
x

Rejection region for α = 0.05 (on the x-axis below the yellow
area).

Rule: Reject H0 (yeah) if Z is in the rejection region.
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Example: p-value for mean of normal population

p-value
The p-value is the probability under the null hypothesis H0 to
obtain a test statistic T with more evidence for the alternative
(more “extreme”) than the one we observed, tobs.
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Example: p-value for normal distribution (two-sided

Again we want to use a quantity T that we know the distribution of
under H0, so that we can calculate the p-value.

In case of the normal distribution with known variance

T =
X̄ − µ0

σ/
√
n

we know that T under H0 is N(0, 1)-distributed and

p = P(|T | ≥ |Tobs|) = 2 · P(T ≥ |Tobs|) = 2(1− Φ(|Tobs|)).

We compute p for the data. We reject H0 if p ≤ α

We compute rejection region for the data. We reject H0 if Tobs is
in the rejection region.
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0.025 Z 0.0250
x

Yellow area: p-value, dashed area: α = 0.05.

Rule: Reject H0 if p ≤ α
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0.05

−|zα|
−1.68

Z 0
x

One-sided rejection region for α = 0.05.

Rule: Reject H0 if Z is inside the rejection region.
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Example: p-value for normal distribution (one-sided)

Again we want to use a quantity T that we know the distribution of
under H0, so that we can calculate the p-value.

In case of the normal distribution with known variance

T =
X̄ − µ0

σ/
√
n

we know that T under H0 is N(0, 1)-distributed.

1.) Check if T is on the right side to give evidence in favour of H1.

2.) p = P(T more extreme than Tobs)
on the right side

=
1− Φ(|Tobs|).

We compute p for the data. We reject H0 if p ≤ α

We compute rejection region for the data. We reject H0 if Tobs is
in the orange rejection region.
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0.05 −|zα|
−1.68

Z 0
x

Yellow area: p value, dashed area: α = 0.05.

Rule: Reject H0 if p ≤ α.
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How many observations are needed?

A test detects a deviation of µ− µ0 more easily if:

• If the significance level α is not very small.

• The number of observations n is large.

• The population variance relatively σ2 is small.
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