
Optional exercises for particle marginal methods
MVE187 / MSA101 Computational methods for Bayesian statistics

Notice the following exercises are optional, for the interested stu-
dents. I am aware that they are not trivial, as the material introduced
at lecture requires to be digested and implementing things takes time.
I am happy to get questions, I can setup individual meetings in per-
son or via zoom, just let me know at picchini@chalmers.se

At lecture we have considered the following state space model:{
xt = 0.5xt−1 + 25 xt−1

(1+x2
t−1)

+ 8 cos(1.2(t− 1)) + vt,

yt = 0.05x2
t + et,

with deterministic x0 = 0 and vt ∼ N (0, q) (i.i.d), et ∼ N (0, r) (i.i.d) and
vt independent of et for any t. Notice here q and r are variances not
standard deviations. At lecture we considered 100 data points generated at
times t = {1, 2, ..., 100} using θ = (q, r) = (0.1, 1), and performed Bayesian
inference on θ.

Not all questions refer to topics discussed at lecture: so try to do some self
study or brush up some notions.

1. Let’s warm up. Set T = 30 and code an Metropolis-Hastings algorithm for
inference on θ, where the likelihood is approximated using the bootstrap
filter1. Use N = 500 particles.

(a) Run Metropolis-Hastings for as many iterations you deemed neces-
sary and, after removing the burnin draws, produce histograms of
the posterior marginals for q and r.

(b) compute posterior means and 95% posterior intervals for q and r.
How did you obtain the latter? (Not explicitly shown at lecture).

2. Verify that using a “low” number of particles (e.g. N = 20) does somehow
impact the quality of the inference. How? Why are the marginals so dif-
ferent from the case using N = 500 even though the algorithm is supposed
to produce exact inference for any value of N? (this is something you learn
in lecture 2, but you can also look at the paragraph below otherwise).

There are two ways to reason about this fact: the first one is more in-
tuitive and guided by running the code using the suggested setting. A
further, more interesting, way is to look at section 1 (first three pages)

1the resulting MCMC algorithm is therefore going to constitute an instance of the pseu-
domarginal approach described in lecture 2. But no need to wait for lecture 2 to experiment.

1



of Sherlock, Thiery, Roberts and Rosenthal (2015). On the efficiency
of pseudo-marginal random walk Metropolis algorithms. The Annals of
Statistics 43(1), 238-275.

3. Now consider a generalization of the previous model:{
xt = 0.5xt−1 + 25 xt−1

(1+x2
t−1)

+ 8 cos(1.2(t− 1)) + vt,

yt = cx2
t + et,

where c is a positive unknown constant. Conduct Bayesian inference for
θ = (c, q, r). Set for c a fairly wide uniform prior with positive support,
and keep the already set inverse-Gamma priors for (q, r). Use (c, q, r) =
(0.05, 0.1, 1) as “true values” to generate T = 50 observations. Set starting
values for (c, q, r) fairly distant from the true data.

Hint: use care when specifying the value of the standard deviation of the
proposal function (Gaussian random walk) for c. 2

4. Consider the Ornstein-Uhlenbeck (OU) SDE model within the following
state-space model (see slides in lecture 2):

dxt = −β(xt − α)dt+ σ · dBt,
yt = xt + et, et ∼iid N(0, 0.3162)

where

• α ∈ R is the stationary mean of the process;

• β > 0 is the growth rate;

• σ > 0 diffusion coefficient (intensity of the intrinsic noise).

OU has known (Gaussian) transition densities. Here I write it explicitly
for the evolution from xt to xt+∆ (∆ > 0)

p(xt+∆|xt) = N

(
α+ (xt − α)e−β∆,

σ2

2β
(1− exp(−2β∆))

)
.

However we wish to again use the bootstrap filter within Metropolis-
Hastings, so for our purposes it is more useful to write how we simulate a
path exactly (just a consequence of using the transition density above):

xt+∆ = α+ (xt − α)e−β∆ +

√
σ2

2β
(1− exp(−2β∆))× ξt+∆

with ξt ∼ N(0, 1) iid. Consider the same settings (number of observa-
tions, priors, true parameters etc) as in the slides. Try to infer the data-
generating model parameters.

2Extra thing for the curious ones: you may wonder if there exist adaptive strategies to
automatically learn the “right” standard deviation for the proposal function to be used in
Metropolis-Hastings. One of those is (simple to implement) the one in Haario et al. (2001)
“An adaptive Metropolis algorithm”, Bernoulli, 223-242 (equation (1) in the paper is all you
need really).

2


