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Following textbooks in classical statistics:
Unbiased estimators

Assume x (maybe x = (x1, . . . , xn)) has some probability distribution
with parameter θ.

▶ Can be specified by some probability density function f (x ; θ).

▶ Fixing x , f (x ; θ) as a function of θ is the likelihood function.

▶ An estimator for θ is a function g(x) that ”estimates” θ; an
estimate is the value of g when x is equal to observed data.

▶ An unbiased estimator has the property

Ex|θ [g(x)] = θ.

▶ An estimator is considered ”good” if it is unbiased.
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Problems with classical framework:
Example 2

▶ Assume we have a sequence of independent trials each resulting in
success (1) or failure (0), with a probability of succes equal to p.
Assume we have observed the following data:

0, 1, 0, 0, 1, 0, 0, 1

We then make the estimate 3/8 = 0.375 for p. How ”good” is this
estimate? Is it unbiased?

▶ It depends on which model formulation and which estimator we have
used!

▶ Alternative 1: The estimator is: Make 8 trials, let X be the number
of successes, and compute p̂ = X/8.

▶ Alternative 2: The estimator is: Make trials until you have produced
3 successful trials, let X be the number of trials you needed to do,
and compute p̂ = 3/X .
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Problems with classical framework:
Example 2

▶ Exercise: Prove that the estimator in alternative 1 is unbiased (easy),
and that the estimator in alternative 2 is biased (more difficult).

▶ Our point here: If we use the biasedness of the estimator to judge
whether the estimate 0.375 is good, the result depends on which
estimator we are using, which depends on what went on in the head
(the plans) of the person doing the experiments.
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Problems with classical framework:
Example 3

▶ In the same situation as above, and the same observations, we want
to make a hypothesis test with H0 : p ≥ 0.6, and alternative
hypothesis H1 : p < 0.6. What is the p-value?

▶ To answer the question, we need to know which test statistic should
be used.

▶ Alternative 1: The test statistic is: Make 8 trials and let X be the
number of successes. Then, assuming p = 0.6, we get
X ∼ Binomial(8, 0.6).

▶ The possible values for X and their probabilities are
0 1 2 3 4 5 6 7 8

0.001 0.008 0.041 0.124 0.232 0.279 0.209 0.090 0.017

▶ We get that the p-value becomes 0.174; the sum of the probabilities
for X = 0, 1, 2, 3.
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Problems with classical framework:
Example 3

▶ Alternative 2: The test statistic is: Make trials until 3 successes
have appeared and let X the number of trials necessary. Then,
assuming p = 0.6, we get X ∼ Neg-Binomial(3, 0.6).

▶ The possible values for X and their probabilities are
3 4 5 6 7 8 9 10 11

0.216 0.259 0.207 0.138 0.083 0.046 0.025 0.013 0.006

12 13 14 15 16,17,. . .
0.003 0.001 0.001 0.000 total 0.000

▶ We get the p-value 0.095; the sum of the probabilities for
8, 9, 10, . . . .

▶ Note that if we use a significance level of 0.1, we will reject the null
hypothesis using the second test statistic, but not using the first test
statistic.

6 / 20



Basic ideas of Bayesian analysis

▶ Represent all observed data, unobserved data, and parameters as
random variables, and consider a joint probability distribution for all
these random variables.

▶ We need to accept using ”probability densities” that do not
integrate to 1! Such densities are called improper densities.

▶ Learning corresponds to considering conditional densities!

▶ No mention of estimation; no need for this concept in Bayesian
statistics!

▶ Focus on prediction: What you want to predict should be
represented with a random variable Ypred in the joint probability
distribution. Find Ypred | data.
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Biased coin example

▶ When flipping coin with known probability of heads (H): prediction
is trivial.

▶ Unknown probability of heads (possible bias): Predict outcome of
next throw Ypred to be H or T given throws so far:
Ydata = HTTHTTT .

▶ First model: Probability of heads is either 0.7 or 0.3, with a
probability 0.5 for each possibility.

▶ Probability of observing a sequence of r heads in N throws:

0.5 · 0.7r · (1− 0.7)N−r + 0.5 · 0.3r · (1− 0.3)N−r

▶ We can compute for example

Pr (Ypred = H | Ydata) =
Pr (Ydata,Ypred = H)

Pr (Ydata)
=

Pr (HTTHTTTH)

Pr (HTTHTTT )

=
0.5 · 0.73 · 0.35 + 0.5 · 0.33 · 0.75

0.5 · 0.72 · 0.35 + 0.5 · 0.32 · 0.75
= 0.3291892

▶ Exact same results if Ydata is instead number of heads in N tries,
ignoring sequence.
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Biased coin example
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Figure: The probability of heads at each point in a sequence of observations,
conditioning on the previous observations of heads and tails. Model: The
probability θ of heads is either 0.7 or 0.5, with
Pr (θ = 0.7) = Pr (θ = 0.3) = 0.5.
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Biased coin example

▶ Reformulating with θ representing the probability of heads:

θ discrete variable with Pr(θ = 0.7) = Pr(θ = 0.3) = 0.5

Ydata | θ ∼ Binomial(N, θ)

Ypred | θ ∼ Binomial(1, θ)

▶ We get in general with conditional independence of Ydata and Ypred

given θ:

π(Ypred | Ydata) =

∫
π(Ypred | θ)π(θ | Ydata) dθ

▶ In our case:

Pr(θ = 0.7 | Ydata) = 0.073

Pr(θ = 0.3 | Ydata) = 0.927

▶ In our case:

Pr(Ypred = H | Ydata)

= Pr(Ypred = H | θ = 0.7) · 0.073 + Pr(Ypred = H | θ = 0.3) · 0.927
= 0.3292
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Biased coin example

▶ An alternative model uses that θ is any real value in (0, 1), with a
uniform prior. Then π(θ) = 1.

▶ We show next time that the posterior for θ now is a Beta
distribution, while the distribution of Ypred given Ydata is a
Beta-Binomial distribution.

▶

0 5 10 15 20 25 30

0
.0

0
.4

0
.8

Index

0 5 10 15 20 25 30

0
.0

0
.4

0
.8

Index

The probability of heads at each point in a sequence of observations,
or the probability of “success”, conditioning on the previous
observations. The priors used are π(θ = 0.7) = π(θ = 0.3) = 0.5
(left) and θ ∼ Uniform(0, 1) (right).
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Bayesian statistics (summary)

▶ Formulate a joint probability density model

π(Ydata,Ypred, θ)

▶ (In classical stats: No prior π(θ) is formulated.)

▶ Find the posterior distribution π(θ | Ydata).

▶ (In classical stats: Find estimate θ̂.)

▶ Make probabilistic predictions using

π(Ypred | Ydata) =

∫
π(Ypred | θ)π(θ | Ydata) dθ

(or
∫
π(Ypred | θ,Ydata)π(θ | Ydata) dθ if necessary).

▶ (In classical stats, predictions are often made using π(Ypred | θ̂).)
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Discussion: Bayes vs. frequentist!

▶ Frequentists: Priors are subjective, WE however are SCIENTISTS
and use only data!

▶ Bayesians: Your methods do not answer the central applied
questions. Bridging this gap IMPLICITLY adds the same information
as that in a choice of prior.

▶ Bayesians: YOUR methods throw away uncertainty!

▶ Frequentists: We are perfectly capable of propagating uncertainty,
WHEN NEEDED.

▶ Bayesians: Yeah, but where does your uncertainty come from?
Confusing the uncertainty of an estimator with the uncertainty in a
parameter creates problems.

▶ Frequentists: Well, Bayesian statistics is not doable anyway: How
do you find your prior in practice, and how do you compute your
posterior and your predictions?

▶ Bayesians: Yes, finding a prior IS difficult in practice. But
concerning the computational stuff, we have made huge progress
since the 90’s.
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More arguments for a Bayesian point of view

▶ Bayesian work is clearly divided into model specification (using
contextual information) and making predictions (mathematical
computations). Applied classical statistics must also use contextual
information, but how it is used can be less clear.

▶ Bayesian modelling provides a choice between using priors that
reflect little knowledge (”non-informative priors”, whatever that
means) and priors that contain important information one wants to
use, even if it is not called ”data”.

▶ There is often a way to translate between results and concepts in
classical and in Bayesian statistics.

▶ May issues in classical statistics, for example overfitting or multiple
testing issues, become much easier to handle when translated to a
Bayesian context (in the opinion of Bayesians).
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Philosophical differences: What does probability mean
when applied in the real world?

▶ The mathematical theory of probability is not under discussion.

▶ What does it mean when we say:
▶ The probability of yahtzee (5 equal dice) in one throw is 0.00077.
▶ The probability of rain tomorrow is 0.3
▶ The probability that this oil well will produce oil is 0.93.

▶ Classical focus: Repeatable events

▶ Bayesian approach: Making probability models for knowledge about
some part of the real world, not the part of the real world itself.
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The academic discussion: history

▶ Bayesian statistics is named after rev. Thomas Bayes who
formulated a version of Bayes’ theorem in 1763.

▶ Early probabilists, such as Laplace, worked in ways compatible with
the Bayesian paradigm.

▶ In the 20’th century, the frequentist paradigm dominated, developed
for example by Fisher.

▶ Towards the end of the 20’th century, there was a furious academic
discussion, between “Frequentists” and “Bayesians”.

▶ Fast computers facilitated the rise of Bayesian statistics in practice.

▶ Today, a lot of basic courses still focus on Frequentist methods,
whereas applied research can often be Bayesian or “agnostic” (i.e.,
“anything goes”).
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Final example of connection between Bayesian and
classical statistics

Assume random variables x1, . . . , xn have a probability distribution with a
parameter θ.

▶ If we construct functions I1 and I2 so that

Pr[I1(x1, . . . , xn) ≤ θ ≤ I2(x1, . . . , xn)] = 0.95

for the random variables x1, . . . , xn we say that
[I1(x1, . . . , xn), I2(x1, . . . , xn)] is a 95% confidence interval for θ.

▶ Interpretation: If we resample data from a model with parameter θ,
newly computed intervals will cover θ with probability 95%.

▶ If we also have a probability distribution defined on θ, then an
interval [I1, I2] where I1 and I2 are numbers is called a 95%
credibility interval for θ if

Pr[I1 ≤ θ ≤ I2 | x1, . . . , xn] = 0.95.

▶ However, when computed, the intervals can often be the same (if
the prior on θ is chosen appropriately)
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Example: The normal model with unit variance

Assume x1, . . . , xn | µ ∼ Normal(µ, 1)
▶ Classical statistics: x ∼ Normal(µ, 1/n) and thus

Pr

[
x + 1.96

1

n
≤ µ ≤ x + 1.96

1

n

]
= 0.95

where x is the random variable.
▶ We saw: If µ has a flat prior then µ | x1, . . . , xn ∼ Normal(x , 1/n)

and thus

Pr

[
x + 1.96

1

n
≤ µ ≤ x + 1.96

1

n
| x1, . . . , xn

]
= 0.95

where µ is the random variable.
▶ NOTE: If the prior is π(θ) we get that

π(µ | x1, . . . , xn) ∝µ Normal(µ; x , 1)π(µ) so the above does not hold
unless π(µ) ∝µ= 1.

▶ With observations 4.2, 5.6, and 4.6, we get x = 4.8 and[
4.8− 1.96 · 1√

3
, 4.8 + 1.96 · 1√

3

]
= [3.67, 5.93]

for both the confidence interval and the credibility interval!
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What do I expect from you in this course?

▶ Formal expectations:
▶ Three individual obligatory assignments
▶ A final written exam, determining the grade

▶ In addition, my actual expectations:
▶ Get familiar with the information on the Canvas course page.
▶ Read up on literature BEFORE lectures.

Student: ”I think maybe students should be encouraged to skim
through the relevant book chapters before the lectures because it
really helped me when doing so.”

▶ Be active in connection with lectures. Ask questions!
▶ Take responsibility for learning assumed background knowledge, such

as running R and basic probability. But also ask me for help!
▶ Make sure you do exercises that help YOU learn. Take advantage of

the exercise sessions.
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What can you expect from the course?

▶ A Canvas course page, also used for handing in assignments.

▶ Two lectures each week. Three lectures will be with Umberto
Picchini.

▶ One exercise session each week: Helping YOU work.

▶ Outside lectures and exercise sessions I will answer mail (and Canvas
messages) when I have time.
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