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What do | expect from you in this course?

» Formal expectations:

» Three individual obligatory assignments
> A final written exam, determining the grade

» In addition, my actual expectations:

» Get familiar with the information on the Canvas course page.

» Read up on literature BEFORE lectures.
Student: "I think maybe students should be encouraged to skim
through the relevant book chapters before the lectures because it
really helped me when doing so.”

» Be active in connection with lectures. Ask questions!

> Take responsibility for learning assumed background knowledge, such
as running R and basic probability. But also ask me for help!

» Make sure you do exercises that help YOU learn. Take advantage of
the exercise sessions.
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What can you expect from the course?

» A Canvas course page, also used for handing in assignments.

» Two lectures each week. Three lectures will be with Umberto
Picchini.

» One exercise session each week.

» Outside lectures and exercise sessions | will answer mail (and Canvas
messages) when | have time.
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Required knowledge

> in basic probability theory:

> Basic knowledge of distributions, densities, conditional distributions,
expectations ...

» Some familiarity with standard distributions such as Binomial,
Poisson, Gamma (but no need to memorize; check out old exam
appendices!).

> Consult your previous statistics/probability textbooks!

» in classical statistics:
» ...not much, you have mostly seen this in the first lecture.

» in computation:

> We use R. Learn R now!
» ..in fact, no advanced programming is needed to get through this
course.
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Overview for today

» Definition and examples of conjugacy. How to compute in practice.
» Predictive distributions when using conjugate families.
» The exponential family of distributions.
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Review from last lecture: Bayesian framework

> Prediction variable Yp4, data Yyae,, parameter 6.

» Specify a complete model by specifying prior 7(8), likelihood
7(Yaata | 6), and prediction distribution 7(Ypreq | 0).

» Derive the posterior (0 | Yyata)-
> Make predictions using

77( Ypred | Ydata) = /F(Ypred ‘ 9)71'(9 | Ydata) do
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Review from last lecture: Notation

» For standard distributions, we use similar but different notation for a
random variable itself, and its density (or probability mass function).
» Example: We write

Y ~ Binomial(N, p) and 7(y) = Binomial(y; N, p)

» so we have
Binomial(y; N, p) = ()/\/l> p’(1—p)N=.

> We define
expression 1 g expression 2

to mean that the second expression is equal to the first expression
except for a factor that does not contain the variable 6.

» We say that expression 2 is proportional to expression 1 as a
function of 6.

» For example

(g) 6Y(1— )V o 07(1— B)V
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Review from last time: The biased coin

» Yped =1 or 0 (heads or tails). Ygata: Number of heads in N
previous throws. 6: prob. of heads.

> We use Ygsts = y ~ Binomial(N, 8) and Ypeq ~ Binomial(1, ).

> We first used a prior with two possible values for 6: 0.7 and 0.3,
with equal probabilities.

> We now compute the posterior when the prior is § ~ Uniform(0, 1).
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The Beta distribution

0 has a Beta distribution on [0, 1], with parameters « and 3, if its density has

the form )
71—(0 | CY,,B) = B(Oé 5)0(1_1(1 - 0)5—1
where B(«, 3) is the Beta function defined by
_ H(a)F(B)
B(a, 8) = Tlatp)

where ['(t) is the Gamma function defined by

F(t):/ x'le ™ dx
0

Recall that for positive integers, '(n) = (n—1)! =1----- (n—1). See for
example Wikipedia for more properties of the Beta distribution, and the Beta
and Gamma functions. We write 7(6 | «, 8) = Beta(0; o, 8) for the Beta
density; we then also write 6 ~ Beta(«, 3).
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The biased coin, continued

> We get from the definition of Beta density that
562711 — 6)°~1 df = B(a, B).

» Show that the posterior becomes

 pa-eN
U= rvary v

» We see that
0|y ~Beta(y+1,N—y+1)

» NOTE: Computations can be made simpler, by not keeping track of
factors not containing y!
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Using a Beta distribution as prior

» Assume the prior is § ~ Beta(a, 8). Compute the posterior!
» The posterior becomes

0|y~Beta(a+y,f+N—y)

» DEFINITION: Given a likelihood model w(y | ). A conjugate family
of priors to this likelihood is a parametric family of distributions so
that if the prior for 6 is in this family, the posterior 6 | y is also in
the family.

» So the Beta family is conjugate to the Binomial likelihood: The
Beta-Binomial conjugacy.

» NOTE: Uniform(0,1) = Beta(1,1), so our previous example is part
of this example.
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Biased coin example, continued

» The prior 7(6) = 1 may not be the most realistic.

> Better: m(0) = Beta(0; 33.4,33.4): Has 90% of its probability in the
interval [0.4,0.6].

|

» The figure includes the posterior density
Beta(6;33.4 + 11,33.4 + 19).
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Biased coin example, continued
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Figure: The probability of heads at each point in a sequence of observations, or
the probability of “success”, conditioning on the previous observations. The
priors used are 6 ~ Uniform(0, 1) (left) and 6 ~ Beta(33.4,33.4) (right). 13/28



Example: The Poisson-Gamma conjugacy

» Assume the likelihood is 7(y | ) = Poisson(y; 6), i.e., that

oY
_ .t
m(y|0)=e v

» Then 7(0 | o, B) = Gamma(0; , 3) where «, 8 are positive
parameters, is a conjugate family. Recall that

Gamma(6; a, 8) = r’f:;)@”‘_l exp(—30).

» Compute the posterior!

> We get
w(0]y)=Gamma (¢;a+y,5+1).

» See Albert Section 3.3 for a computational example.
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Example: The Normal-Gamma conjugacy

» Assume the likelihood is w(y | 7) = Normal(y; u, 1/7), so that y is
normally distributed with known mean g and unknown precision 7.
The likelihood becomes

w17 = ot en (g b ) o e (<50 - )

» Prove: 7(7 | o, 8) = Gamma(7; e, 8) is a conjugate family, where

(7 | o, B) o, ro1 exp(—p07).

» Specifically, we get the posterior below:

r(r 1) = Gamma (ria+ 3,54 20y~ ).

» We can also describe this conjugacy using the variance o2 and an
inverse Gamma (or inverse Chi-squared) distribution.
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Example: The Normal-Normal conjugacy

» Assume the likelihood is w(y | @) = Normal(y; 6,1/7), where 75 is a
known and fixed precision.

» Then 7(0 | w,7) = Normal(0; i1, 1/7), where 7 is positive and p has
any real value, is a conjugate family.

» Specifically, we have the posterior

1
m(0 | y) = Normal (0; M, >
TOo+7T To+T

» PROOF: Use completion of squares.
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PROOF

(0 |y) oo w(y|0)m(0)
g exp (—%(y — 9)2) exp (—%(0 - u)z)

1

= exp (—2 [Toy?® — 270y0 + 7007 + 76> — 2701 + 7',u2]>
1

xXg exp <—2 [(To + 7)92 —2(1oy + T[L)e])
1 oy + 74\

g exp( 2(TO+T)(9 - )

1
g Normal <6’;W,)
To+7 To+T
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Conditionally independent data

» Assume Yya.ta = (v1,y2), where y; and y» are conditionally
independent given 6, i.e.,
(1 [0,y2) = 7(y1 | 0).
» Then
(0 | y1,y2) oo w(y1, y2 | O)m(0) = w(y1 [ O)m(y2 | O)m(0)

» NOTE: We may first find the posterior given y», then use this
posterior as the prior when finding the posterior given y;: The result
will be the posterior given y; and y».

» NOTE: We may update the prior on 0 sequentially with data
Y1,¥2,...,Yn, as long as all the y; are conditionally independent
given 6.
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Example: Normal distribution with fixed variance 1

» Assume Yyata = (v1, Y2, ..., ¥n) where, independently given 6,
Y1.¥2,- -+, ¥n ~ Normal(6,1)

» If the prior is & ~ Normal(u,1/7), we get

1
6| y1 ~ Normal (W )

147 1471

» Repeated updates give (writing y = (y1 + -+ + ya)/n)

ny+7tu 1
n+7 'n+7)°

9|y1,...,y,,~Norma|<

> We see that, using the improper prior w(6) g 1, or setting 7 =0,
gives the posterior Normal(y, 1/n).
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Predictive distributions

» If w(y | 0) is a likelihood and 7(6) is some density, then

() = / =y | 0)n(6) db

is called a predictive distribution.
» If y |  ~ Binomial(N, ) and 0 ~ Beta(, 3), show that

m(y) /Binomial(y; N, 0) Beta(0; a, B) db

- () sy

» This is called a Beta-Binomial distribution:

7(y) = Beta-Binomial(y; N, «, ).
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Predictive distributions when you have conjugacy

» When 7() is in a conjugate family to 7(y | #), we can always
analytically compute the integral defining the predictive distribution!

» In fact, we can always compute the predictive distribution without
any integration at all! Use

nly | O)m(6)
"W =Ty

» Example: Compute the Beta-Binomial result above without
considering integration.
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Prior predictive / posterior predictive

> If w(6) is considered a prior we call 7(y) = [7(y | 6)7(6) df a prior
predictive.

» If we condition on (conditionally independent) Ygata, we get

(Yorea | Yiara) = / (Yorea | )7(8 | Yants) .

It is the same type of formula, but 7(Ypred | Ydata) is now called the
posterior predictive.

» NOTE: What can be considered a prior in one perspective can be
considered a posterior in another perspective.
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Predictive distribution for the Poisson-Gamma conjugacy

|

>

We have seen: If y | 6 ~ Poisson(6) and § ~ Gamma(c, 3) then
0|y~ Gamma(a+y,5+1).

When Ypred = y and y ~ Poisson(), direct computation gives the
prior predictive distribution

r) = T LOTO) 5T ty)

(0| y) (B+1)>T(a)y!
Note that the positive integer x has a Negative-Binomial distribution
with parameters r and p if its probability mass function is

m(x | r,p)= (X+;_ 1) (I-p)yp = r(Xr(iJlr)F)(r)(l - p)p"

We get that the prior predictive is Negative-Binomial(a, 5/(1 + 5)).

Note that we can get the posterior predictive by simply replacing the
« and B of the prior with the corresponding parameters after the
update with data.
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Poisson-Gamma example

0.04 0.08

0.00

Figure: Two different ways of predicting the values of ki, given the
observations k; = 20, ko = 24, k3 = 23 when k; | 8 ~ Poisson(6) and an
improper Gamma(0, 0) prior. The pluses represent the Bayesian predictions
using the posterior predictive; the circles represent the Frequentist predictions,
using the Poisson distribution with parameter (20 + 24 + 23)/3 = 22.33.
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Example: Predictive distribution for the Normal-Normal

conjugacy

» Assume m(y | #) = Normal(y; 0,1/7) and 7(8) = Normal(y,1/7).

» Instead of using the type of computations above, the following is
simpler:

> We know from general theory of the normal distribution that 7 (y) is
normal.

> E(y) =E(E(y|0)) = E(0) =
> Varly) = Var(E(y | ) + E(Var(y | 8)) = Var() 1 E(1/7) =
1/7+1/7.
» So for the prior predictive we get

m(y) = Normal(y; u; 1/7 4+ 1/75)
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Exponential distribution families

» Many parametric families of distributions can be written in a
particular form:

m(x | n) = h(x)g(n) exp (1 - u(x))

where 1 and u(x) are vectors, 1) - u(x) is their dot product, and 7 is
called the “natural parameters” of the family.

» Some examples of exponential families of distributions,
corresponding to particular choices of g, h, and u:
» Normal distributions.
Beta distributions.
Poisson distributions.
Gamma distributions.
Bernoulli distributions and Binomial distributions for a fixed N.
Multinomial distributions for a fixed N.
» ....and many more.

VVYVYVYY

» Exponential families of distributions share many properties and can
be studied together.
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Conjugacies and exponential families

> If (x| n) = h(x)g(n)exp (1 - u(x)), then a conjugate family of
priors for 7 is given as

m(n | v, B) oy g(n)" exp (1 - B).
The posterior becomes
w(n | x) ocy g(n)"exp (- (B + u(x))).

» Essentially all examples of conjugacy fit into the framework above,
so the above describes conjugacy in general.

» Note that the conjugate family of priors is also an exponential family.
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Some properties

Assume 7(x | n) = h(x)g(n) exp (1 - u(x).
» The expectation (and further moments) of u(x) can be expressed
with a differentiation of g(n):

Exjplu(x)] = =V, log g(n).

» Given data x1,x2,...,xy and a prior w(n | v, B) x,, g(n)” exp (1 - 5)
the posterior becomes

(| xt, ., xn) oo, g(n)" N exp (77 . <B + Z u(x;))) .

> With for example a flat prior (1 =0, 8 = 0), the posterior is
o<y g(m)N exp (n DI u(x,-)) and

» The posterior (i.e., likelihood) depends only on >, u(x;).
» The maximum posterior (i.e., maximum likelihood) is the 7 satisfying

N
1
~Vy logg(h) = 5 D ulx).
i=1
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