MSA101/MVE187 2022 Lecture 2

Petter Mostad

Chalmers University

August 31, 2022

What do I expect from you in this course?

- Formal expectations:
- Three individual obligatory assignments
- A final written exam, determining the grade
- In addition, my actual expectations:
- Get familiar with the information on the Canvas course page.
- Read up on literature BEFORE lectures. Student: "I think maybe students should be encouraged to skim through the relevant book chapters before the lectures because it really helped me when doing so."
- Be active in connection with lectures. Ask questions!
- Take responsibility for learning assumed background knowledge, such as running R and basic probability. But also ask me for help!
- Make sure you do exercises that help YOU learn. Take advantage of the exercise sessions.

What can you expect from the course?

- A Canvas course page, also used for handing in assignments.
- Two lectures each week. Three lectures will be with Umberto Picchini.
- One exercise session each week.
- Outside lectures and exercise sessions I will answer mail (and Canvas messages) when I have time.

Required knowledge

- in basic probability theory:
- Basic knowledge of distributions, densities, conditional distributions, expectations ...
- Some familiarity with standard distributions such as Binomial, Poisson, Gamma (but no need to memorize; check out old exam appendices!).
- Consult your previous statistics/probability textbooks!
- in classical statistics:
- ...not much, you have mostly seen this in the first lecture.
- in computation:
- We use R. Learn R now!
- ...in fact, no advanced programming is needed to get through this course.

Overview for today

- Definition and examples of conjugacy. How to compute in practice.
- Predictive distributions when using conjugate families.
- The exponential family of distributions.

Review from last lecture: Bayesian framework

- Prediction variable $Y_{\text {pred }}$, data $Y_{\text {data }}$, parameter θ.
- Specify a complete model by specifying prior $\pi(\theta)$, likelihood $\pi\left(Y_{\text {data }} \mid \theta\right)$, and prediction distribution $\pi\left(Y_{\text {pred }} \mid \theta\right)$.
- Derive the posterior $\pi\left(\theta \mid Y_{\text {data }}\right)$.
- Make predictions using

$$
\pi\left(Y_{\text {pred }} \mid Y_{\text {data }}\right)=\int \pi\left(Y_{\text {pred }} \mid \theta\right) \pi\left(\theta \mid Y_{\text {data }}\right) d \theta
$$

Review from last lecture: Notation

- For standard distributions, we use similar but different notation for a random variable itself, and its density (or probability mass function).
- Example: We write

$$
Y \sim \operatorname{Binomial}(N, p) \quad \text { and } \quad \pi(y)=\operatorname{Binomial}(y ; N, p)
$$

- so we have

$$
\operatorname{Binomial}(y ; N, p)=\binom{N}{y} p^{y}(1-p)^{N-y}
$$

- We define

$$
\text { expression } 1 \quad \propto_{\theta} \quad \text { expression } 2
$$

to mean that the second expression is equal to the first expression except for a factor that does not contain the variable θ.

- We say that expression 2 is proportional to expression 1 as a function of θ.
- For example

$$
\binom{N}{y} \theta^{y}(1-\theta)^{N-y} \propto_{\theta} \theta^{y}(1-\theta)^{N-y}
$$

Review from last time: The biased coin

- $Y_{\text {pred }}=1$ or 0 (heads or tails). $Y_{\text {data }}$: Number of heads in N previous throws. θ : prob. of heads.
- We use $Y_{\text {data }}=y \sim \operatorname{Binomial}(N, \theta)$ and $Y_{\text {pred }} \sim \operatorname{Binomial}(1, \theta)$.
- We first used a prior with two possible values for $\theta: 0.7$ and 0.3 , with equal probabilities.
- We now compute the posterior when the prior is $\theta \sim \operatorname{Uniform}(0,1)$.

The Beta distribution

θ has a Beta distribution on $[0,1]$, with parameters α and β, if its density has the form

$$
\pi(\theta \mid \alpha, \beta)=\frac{1}{\mathrm{~B}(\alpha, \beta)} \theta^{\alpha-1}(1-\theta)^{\beta-1}
$$

where $\mathrm{B}(\alpha, \beta)$ is the Beta function defined by

$$
\mathrm{B}(\alpha, \beta)=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}
$$

where $\Gamma(t)$ is the Gamma function defined by

$$
\Gamma(t)=\int_{0}^{\infty} x^{t-1} e^{-x} d x
$$

Recall that for positive integers, $\Gamma(n)=(n-1)!=1 \cdots \cdot(n-1)$. See for example Wikipedia for more properties of the Beta distribution, and the Beta and Gamma functions. We write $\pi(\theta \mid \alpha, \beta)=\operatorname{Beta}(\theta ; \alpha, \beta)$ for the Beta density; we then also write $\theta \sim \operatorname{Beta}(\alpha, \beta)$.

The biased coin, continued

- We get from the definition of Beta density that

$$
\int_{0}^{1} \theta^{\alpha-1}(1-\theta)^{\beta-1} d \theta=B(\alpha, \beta) .
$$

- Show that the posterior becomes

$$
\pi(\theta \mid y)=\frac{\theta^{y}(1-\theta)^{N-y}}{B(y+1, N-y+1)}
$$

- We see that

$$
\theta \mid y \sim \operatorname{Beta}(y+1, N-y+1)
$$

- NOTE: Computations can be made simpler, by not keeping track of factors not containing y !

Using a Beta distribution as prior

- Assume the prior is $\theta \sim \operatorname{Beta}(\alpha, \beta)$. Compute the posterior!
- The posterior becomes

$$
\theta \mid y \sim \operatorname{Beta}(\alpha+y, \beta+N-y)
$$

- DEFINITION: Given a likelihood model $\pi(y \mid \theta)$. A conjugate family of priors to this likelihood is a parametric family of distributions so that if the prior for θ is in this family, the posterior $\theta \mid y$ is also in the family.
- So the Beta family is conjugate to the Binomial likelihood: The Beta-Binomial conjugacy.
- NOTE: Uniform $(0,1)=\operatorname{Beta}(1,1)$, so our previous example is part of this example.

Biased coin example, continued

- The prior $\pi(\theta)=1$ may not be the most realistic.
- Better: $\pi(\theta)=\operatorname{Beta}(\theta ; 33.4,33.4)$: Has 90% of its probability in the interval [0.4, 0.6].

- The figure includes the posterior density $\operatorname{Beta}(\theta ; 33.4+11,33.4+19)$.

Biased coin example, continued

Figure: The probability of heads at each point in a sequence of observations, or the probability of "success", conditioning on the previous observations. The priors used are $\theta \sim \operatorname{Uniform}(0,1)$ (left) and $\theta \sim \operatorname{Beta}(33.4,33.4)$ (right).

Example: The Poisson-Gamma conjugacy

- Assume the likelihood is $\pi(y \mid \theta)=\operatorname{Poisson}(y ; \theta)$, i.e., that

$$
\pi(y \mid \theta)=e^{-\theta} \frac{\theta^{y}}{y!}
$$

- Then $\pi(\theta \mid \alpha, \beta)=\operatorname{Gamma}(\theta ; \alpha, \beta)$ where α, β are positive parameters, is a conjugate family. Recall that

$$
\operatorname{Gamma}(\theta ; \alpha, \beta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{\alpha-1} \exp (-\beta \theta)
$$

- Compute the posterior!
- We get

$$
\pi(\theta \mid y)=\operatorname{Gamma}(\theta ; \alpha+y, \beta+1)
$$

- See Albert Section 3.3 for a computational example.

Example: The Normal-Gamma conjugacy

- Assume the likelihood is $\pi(y \mid \tau)=\operatorname{Normal}(y ; \mu, 1 / \tau)$, so that y is normally distributed with known mean μ and unknown precision τ. The likelihood becomes

$$
\pi(y \mid \tau)=\frac{1}{\sqrt{2 \pi 1 / \tau}} \exp \left(-\frac{1}{2 / \tau}(y-\mu)^{2}\right) \propto_{\tau} \tau^{1 / 2} \exp \left(-\frac{1}{2}(y-\mu)^{2} \tau\right)
$$

- Prove: $\pi(\tau \mid \alpha, \beta)=\operatorname{Gamma}(\tau ; \alpha, \beta)$ is a conjugate family, where

$$
\pi(\tau \mid \alpha, \beta) \propto_{\tau} \tau^{\alpha-1} \exp (-\beta \tau)
$$

- Specifically, we get the posterior below:

$$
\pi(\tau \mid y)=\operatorname{Gamma}\left(\tau ; \alpha+\frac{1}{2}, \beta+\frac{1}{2}(y-\mu)^{2}\right) .
$$

- We can also describe this conjugacy using the variance σ^{2} and an inverse Gamma (or inverse Chi-squared) distribution.

Example: The Normal-Normal conjugacy

- Assume the likelihood is $\pi(y \mid \theta)=\operatorname{Normal}\left(y ; \theta, 1 / \tau_{0}\right)$, where τ_{0} is a known and fixed precision.
- Then $\pi(\theta \mid \mu, \tau)=\operatorname{Normal}(\theta ; \mu, 1 / \tau)$, where τ is positive and μ has any real value, is a conjugate family.
- Specifically, we have the posterior

$$
\pi(\theta \mid y)=\operatorname{Normal}\left(\theta ; \frac{\tau_{0} y+\tau \mu}{\tau_{0}+\tau}, \frac{1}{\tau_{0}+\tau}\right)
$$

- PROOF: Use completion of squares.

PROOF

$$
\begin{aligned}
\pi(\theta \mid y) & \propto_{\theta} \quad \pi(y \mid \theta) \pi(\theta) \\
& \propto_{\theta} \\
& \exp \left(-\frac{\tau_{0}}{2}(y-\theta)^{2}\right) \exp \left(-\frac{\tau}{2}(\theta-\mu)^{2}\right) \\
& \exp \left(-\frac{1}{2}\left[\tau_{0} y^{2}-2 \tau_{0} y \theta+\tau_{0} \theta^{2}+\tau \theta^{2}-2 \tau \theta \mu+\tau \mu^{2}\right]\right) \\
\propto_{\theta} & \exp \left(-\frac{1}{2}\left[\left(\tau_{0}+\tau\right) \theta^{2}-2\left(\tau_{0} y+\tau \mu\right) \theta\right]\right) \\
\propto_{\theta} & \exp \left(-\frac{1}{2}\left(\tau_{0}+\tau\right)\left(\theta-\frac{\tau_{0} y+\tau \mu}{\tau_{0}+\tau}\right)^{2}\right) \\
\propto_{\theta} & \quad \operatorname{Normal}\left(\theta ; \frac{\tau_{0} y+\tau \mu}{\tau_{0}+\tau}, \frac{1}{\tau_{0}+\tau}\right)
\end{aligned}
$$

Conditionally independent data

- Assume $Y_{\text {data }}=\left(y_{1}, y_{2}\right)$, where y_{1} and y_{2} are conditionally independent given θ, i.e.,

$$
\pi\left(y_{1} \mid \theta, y_{2}\right)=\pi\left(y_{1} \mid \theta\right)
$$

- Then

$$
\pi\left(\theta \mid y_{1}, y_{2}\right) \propto_{\theta} \pi\left(y_{1}, y_{2} \mid \theta\right) \pi(\theta)=\pi\left(y_{1} \mid \theta\right) \pi\left(y_{2} \mid \theta\right) \pi(\theta)
$$

- NOTE: We may first find the posterior given y_{2}, then use this posterior as the prior when finding the posterior given y_{1} : The result will be the posterior given y_{1} and y_{2}.
- NOTE: We may update the prior on θ sequentially with data $y_{1}, y_{2}, \ldots, y_{n}$, as long as all the y_{i} are conditionally independent given θ.

Example: Normal distribution with fixed variance 1

- Assume $Y_{\text {data }}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ where, independently given θ,

$$
y_{1}, y_{2}, \ldots, y_{n} \sim \operatorname{Normal}(\theta, 1)
$$

- If the prior is $\theta \sim \operatorname{Normal}(\mu, 1 / \tau)$, we get

$$
\theta \left\lvert\, y_{1} \sim \operatorname{Normal}\left(\frac{y_{1}+\tau \mu}{1+\tau}, \frac{1}{1+\tau}\right)\right.
$$

- Repeated updates give (writing $\bar{y}=\left(y_{1}+\cdots+y_{n}\right) / n$)

$$
\theta \mid y_{1}, \ldots, y_{n} \sim \operatorname{Normal}\left(\frac{n \bar{y}+\tau \mu}{n+\tau}, \frac{1}{n+\tau}\right) .
$$

- We see that, using the improper prior $\pi(\theta) \propto_{\theta} 1$, or setting $\tau=0$, gives the posterior $\operatorname{Normal}(\bar{y}, 1 / n)$.

Predictive distributions

- If $\pi(y \mid \theta)$ is a likelihood and $\pi(\theta)$ is some density, then

$$
\pi(y)=\int \pi(y \mid \theta) \pi(\theta) d \theta
$$

is called a predictive distribution.

- If $y \mid \theta \sim \operatorname{Binomial}(N, \theta)$ and $\theta \sim \operatorname{Beta}(\alpha, \beta)$, show that

$$
\begin{aligned}
\pi(y) & =\int \operatorname{Binomial}(y ; N, \theta) \operatorname{Beta}(\theta ; \alpha, \beta) d \theta \\
& =\binom{N}{y} \frac{B(\alpha+y, \beta+N-y)}{B(\alpha, \beta)}
\end{aligned}
$$

- This is called a Beta-Binomial distribution:

$$
\pi(y)=\operatorname{Beta-Binomial}(y ; N, \alpha, \beta) .
$$

Predictive distributions when you have conjugacy

- When $\pi(\theta)$ is in a conjugate family to $\pi(y \mid \theta)$, we can always analytically compute the integral defining the predictive distribution!
- In fact, we can always compute the predictive distribution without any integration at all! Use

$$
\pi(y)=\frac{\pi(y \mid \theta) \pi(\theta)}{\pi(\theta \mid y)}
$$

- Example: Compute the Beta-Binomial result above without considering integration.

Prior predictive / posterior predictive

- If $\pi(\theta)$ is considered a prior we call $\pi(y)=\int \pi(y \mid \theta) \pi(\theta) d \theta$ a prior predictive.
- If we condition on (conditionally independent) $Y_{\text {data }}$, we get

$$
\pi\left(Y_{\text {pred }} \mid Y_{\text {data }}\right)=\int \pi\left(Y_{\text {pred }} \mid \theta\right) \pi\left(\theta \mid Y_{\text {data }}\right) d \theta
$$

It is the same type of formula, but $\pi\left(Y_{\text {pred }} \mid Y_{\text {data }}\right)$ is now called the posterior predictive.

- NOTE: What can be considered a prior in one perspective can be considered a posterior in another perspective.

Predictive distribution for the Poisson-Gamma conjugacy

- We have seen: If $y \mid \theta \sim \operatorname{Poisson}(\theta)$ and $\theta \sim \operatorname{Gamma}(\alpha, \beta)$ then $\theta \mid y \sim \operatorname{Gamma}(\alpha+y, \beta+1)$.
- When $Y_{\text {pred }}=y$ and $y \sim \operatorname{Poisson}(\theta)$, direct computation gives the prior predictive distribution

$$
\pi(y)=\frac{\pi(y \mid \theta) \pi(\theta)}{\pi(\theta \mid y)}=\frac{\beta^{\alpha} \Gamma(\alpha+y)}{(\beta+1)^{\alpha+y} \Gamma(\alpha) y!}
$$

- Note that the positive integer x has a Negative-Binomial distribution with parameters r and p if its probability mass function is

$$
\pi(x \mid r, p)=\binom{x+r-1}{x} \cdot(1-p)^{x} p^{r}=\frac{\Gamma(x+r)}{\Gamma(x+1) \Gamma(r)}(1-p)^{x} p^{r}
$$

- We get that the prior predictive is Negative-Binomial $(\alpha, \beta /(1+\beta))$.
- Note that we can get the posterior predictive by simply replacing the α and β of the prior with the corresponding parameters after the update with data.

Poisson-Gamma example

Figure: Two different ways of predicting the values of k_{4}, given the observations $k_{1}=20, k_{2}=24, k_{3}=23$ when $k_{i} \mid \theta \sim \operatorname{Poisson}(\theta)$ and an improper $\operatorname{Gamma}(0,0)$ prior. The pluses represent the Bayesian predictions using the posterior predictive; the circles represent the Frequentist predictions, using the Poisson distribution with parameter $(20+24+23) / 3=22.33$.

Example: Predictive distribution for the Normal-Normal conjugacy

- Assume $\pi(y \mid \theta)=\operatorname{Normal}\left(y ; \theta, 1 / \tau_{0}\right)$ and $\pi(\theta)=\operatorname{Normal}(\mu, 1 / \tau)$.
- Instead of using the type of computations above, the following is simpler:
- We know from general theory of the normal distribution that $\pi(y)$ is normal.
- $E(y)=E(E(y \mid \theta))=E(\theta)=\mu$.
- $\operatorname{Var}(y)=\operatorname{Var}(E(y \mid \theta))+E(\operatorname{Var}(y \mid \theta))=\operatorname{Var}(\theta)+E\left(1 / \tau_{0}\right)=$ $1 / \tau+1 / \tau_{0}$.
- So for the prior predictive we get

$$
\pi(y)=\operatorname{Normal}\left(y ; \mu ; 1 / \tau+1 / \tau_{0}\right)
$$

Exponential distribution families

- Many parametric families of distributions can be written in a particular form:

$$
\pi(x \mid \eta)=h(x) g(\eta) \exp (\eta \cdot u(x))
$$

where η and $u(x)$ are vectors, $\eta \cdot u(x)$ is their dot product, and η is called the "natural parameters" of the family.

- Some examples of exponential families of distributions, corresponding to particular choices of g, h, and u :
- Normal distributions.
- Beta distributions.
- Poisson distributions.
- Gamma distributions.
- Bernoulli distributions and Binomial distributions for a fixed N.
- Multinomial distributions for a fixed N.
-and many more.
- Exponential families of distributions share many properties and can be studied together.

Conjugacies and exponential families

- If $\pi(x \mid \eta)=h(x) g(\eta) \exp (\eta \cdot u(x))$, then a conjugate family of priors for η is given as

$$
\pi(\eta \mid \nu, \beta) \propto_{\eta} g(\eta)^{\nu} \exp (\eta \cdot \beta)
$$

The posterior becomes

$$
\pi(\eta \mid x) \propto_{\eta} g(\eta)^{\nu+1} \exp (\eta \cdot(\beta+u(x)))
$$

- Essentially all examples of conjugacy fit into the framework above, so the above describes conjugacy in general.
- Note that the conjugate family of priors is also an exponential family.

Some properties

Assume $\pi(x \mid \eta)=h(x) g(\eta) \exp (\eta \cdot u(x))$.

- The expectation (and further moments) of $u(x)$ can be expressed with a differentiation of $g(\eta)$:

$$
\mathrm{E}_{x \mid \eta}[u(x)]=-\nabla_{\eta} \log g(\eta)
$$

- Given data $x_{1}, x_{2}, \ldots, x_{N}$ and a prior $\pi(\eta \mid \nu, \beta) \propto_{\eta} g(\eta)^{\nu} \exp (\eta \cdot \beta)$ the posterior becomes

$$
\pi\left(\eta \mid x_{1}, \ldots, x_{N}\right) \propto_{\eta} g(\eta)^{\nu+N} \exp \left(\eta \cdot\left(\beta+\sum_{i=1}^{N} u\left(x_{i}\right)\right)\right)
$$

- With for example a flat prior $(\mu=0, \beta=0)$, the posterior is $\propto_{\eta} g(\eta)^{N} \exp \left(\eta \cdot \sum_{i=1}^{N} u\left(x_{i}\right)\right)$ and
- The posterior (i.e., likelihood) depends only on $\sum_{i} u\left(x_{i}\right)$.
- The maximum posterior (i.e., maximum likelihood) is the $\hat{\eta}$ satisfying

$$
-\nabla_{\eta} \log g(\hat{\eta})=\frac{1}{N} \sum_{i=1}^{N} u\left(x_{i}\right)
$$

