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Review: Bayesian framework

> Prediction variable Yp4, data Yyae,, parameter 6.

» Specify a complete model by specifying prior 7(8), likelihood
7(Yaata | 6), and prediction distribution 7(Ypreq | 0).

» Derive the posterior (0 | Yyata)-
> Make predictions using

77( Ypred | Ydata) = /F(Ypred ‘ 9)71'(9 | Ydata) do
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|deas for practical computations

> Last time: Both likelihood and prior are from a list of elementary
distributions, and are conjugate.

» Extension: Use discretization and computers: Works in low
dimensions.

» Small extension: Use mixtures of priors.

\4

Small extension: Use multivariate conjugacies.

P> Next time: Huge extension: Use simulation.
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Bayesian inference with a discrete parameter 6

Assume 6 has possible values 6y, ...,6,.

» The prior (0) is represented as a vector v = (vq,..., V,):

v; = m(6;).
> The likelihood 7(y | 0) is represented as a vector w = (wy, ..., w,):

wi =7(y | 6i).
» The posterior is represented as a vector z = (z1, ..., 2,):
Vi - Wi
Zj =

S viow

» The posterior predictive distribution can be computed for all values
of Ypred as a sum:

n

W(Ypred | Ydata) - Z"T(Ypred | 0,‘)2,'.
i=1
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Example: An experimental production process

An experimental production process for an electronic component
produces faulty components at a rate 6; 17 tests have produced 2 faulty
components; you want to predict probability of at most 1 faulty
component in the next batch of 10.

> Prior (constructed based on earlier experience)

» Likelihood: Binomial(2;17,6)

uuuuuuuuuuuuuuuuuu

>

> Prediction
> ¢(Binomial(0; 10, §) 4 Binomial(1; 10, 6))x (6 | data) = 0.4642503
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Example: Braking distance for a bike, depending on speed

Data

>

Braking distance for a bike has been mea-
sured at 5 different speeds: Data is
(x1,51), -+, (x5, ys5). At speed 30, what is *
the probability that breaking distance will be
more than 57

© 4

~ -

T T T T T
20 25 30 35 40

speed

» Model: We assume y; | a, b ~ Normal(ax; + bx?,0.82), and use a
discrete prior on a grid for parameters (a, b).

Prior

0000 0002 0004 0006 0008 0010
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Example: Braking distance for a bike

> Likelihood: m(data | (a, b)) = [T-_; Normal(y;; ax; + bx?,0.8?)

» Likelihood and posterior computed:

Likelihood Posterior

0006 0.008

004

020
£
e .-l"-l-

0000 0002 0004 0006 0008 0010
| ' ' ' ' '

> Prediction:
Pr(y > 5| x = 30, data)
=Y (/ Normal(y; a30 + 5302, 0.8%) dy) m(a, b | data)
5

a,b
= 0.9396133
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» Two main strategies: Aiming for non-informative or informative
priors.

» Non-informative examples:

> With conjugacies, using improper distributions like Gamma(0, 0) or
Beta(0, 0)
> "Flat” densities...(but depends on scale!)
> Informative:
» Use posteriors based on previous data, or

» Check out the prior predictive: Does it "look reasonable” compared
to what you expect for such data?
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The curse of dimensionality

» What happens with the discretization if 0 is a
high-dimensional variable?

» In practice, we have to find other methods than discretization.
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Numerical integration

The integrals of Bayesian inference

7T(Ydata | 0)71'((9)
fe 71-(Ydata | 0)77(9) do

7T(9 | Ydata) =

and

T(Yorea | Yaora) = /9 (Yorea | 0)7(8 | Yanta) d6

f9 ﬂ-( Ypred | 9)71‘( Ydata | 9)7'('(9) do
fo 7T( Ydata | 9)7'('(9) do

can be computed with numerical integration.

» Can work slightly better than discretization (after all discretization is
a primitive form of numerical integration).

» Suffers from the same curse of dimensionality as discretization.
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A density written as a linear combination of other densities is called a mixture
(where 37 v =1):

w(0) = leﬂr;(@).
i=1
» Using a mixture prior gives a mixture prior predictive distribution:
m(y) = /ﬂ(y | 6) ZV,‘W,‘(G) do = Zl/;/ﬂ'(y | 0)i(0) db = Zuiw;(y).
i=1 i=1 i=1

» Defining mi(0 | y) = “097®) e also get a mixture posterior:

mi(y)
w01y = T0I0m0) _ XLivmly | 0)m(0) _ XL vimly)m© ] y)
m(y) Sy vmi(y) > vimi(y)
_ o _vm)
- z:; <Zf1ﬂjﬂj(y)> (0 1y)

» Finally, a mixture posterior predictive distribution:

7(Yorea | ¥) = / 7(Yorea | 0)7(0 | y) dO = (Z””> 7i(Yorea | ¥)-

i=1 j=1 /"LJTrJ(y)
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Example: More on braking bikes

We now use the following pixture of priors:

prior 1 prior2

095 - 4005 - =
> We get the updated weights

0.95 - 11 (data)

0.95 - 7T1(data) + 0.05 - 7T2(data) 0.8530929

for Prior 1 and 1 — 0.8530929 = 0.1469071 for Prior 2.

» Using combined prior, the prediction hardly changes: 0.9399131
(before it was 0.9396133).
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Mixtures when priors are conjugate

» When all the priors 71(0), ..., 7,(6) are conjugate to the likelihood
m(data | 6), the mixture is also conjugate!

» Is a very powerful way to make families of conjugate priors more
flexible!

» Note that we have formulas for all the weights and the posteriors
occurring, no integration necessary.
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Example: Using mixtures

If y ~ Geometric(p) with 0 < p < 1 then w(y | p) = p(1 — p)¥, and
p ~ Beta(a, ) is a conjugate family.
» If in some applied context our prior information is represented by,
e.g., a histogram, we can model it as a Beta mixture:

Histogram of storedBetaData Prior
w
3 =
e
5
3 2 o
g o 2 o
s g 3 -
g g
= 5
8
2 o
8 S
o 24
T T T T T 1 T T T T T T
0.0 02 0.4 06 08 1.0 0.0 02 04 06 08 1.0
storedBetaData x

» In this simple case, you could alternatively use discretization.
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Multivariate conjugacy example:

The normal likelihood, no parameters known

» Assume y ~ Normal(u,1/7), with both p and 7 uncertain. The
likelihood becomes

T
7T(y | ‘LL,T) Xy, 1 Tl/2 exp <7§(X - :u‘)2)

» Then the Normal-Gamma family is conjugate: The pair (i, 7) has a
Normal-Gamma distribution with parameters pg, A > 0, > 0,8 > 0
if the density has the form

7T(:u77— | Ho, )‘70‘76) = rf:)\\/F%Ta_l/z exp <_/87- - %(H - MO)2>

» Note: If (i, 7) has the Normal-Gamma distribution above, we have
7 ~ Gamma(a, ) and p | 7 ~ Normal(uo, 1/(AT)).
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Computing the posterior

>
>

»

>

|

Assume x = (x1, 2, ..., X,) sampled from Normal(y,1/7).
Assume prior

7 ~ Gamma(a, 8) and p | 7~ Normal(ug,1/(A7))

Computing the posterior density using our proportionality method,
the result is a Normal-Gamma density which can be expressed as

n 1< n\ (X — uo)?
T mm = ,E - VAT AN AN VN
| x Ga a<a+2,5+2i1(x, x)—i—)\ - 5 )

Ao + nx 1
A+n T (A+n)T

w|T,x ~ Normal (

Computations like these can get hairy; if you are lazy like me,
consult, e.g., Wikipedia.

Using improper prior 7(j,T) o<, 1/T gives posterior
7| x ~ Gamma(51, 1 37 (xi — X)?) and | 7, x ~ Normal(x, -L).

NOTE: The expectation of the posterior for 7 then becomes 1
divided by the classical variance estimator, and the expectation for p

becomes Xx.
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Predictive distributions

» Given parameters v > 0, pu, and o2, a real variable x has a
generalized t-distribution, x ~ t(v, 1, 2), when the density is

v+1

_ 2y _ 1 1(x=n |
t(X'V’M,U)_\/WB(U/Q,l/Q) [1"‘”( o )]

> When x | 7 ~ Normal(y, 5=) and 7 ~ Gamma(a, ), the marginal
(i.e. prior predictive) becomes

m(x) =t (x; 2a, 1, Oi\)

> When x | p, 7 ~ Normal(u, 1/7), p | 7 ~ Normal(o, 5-), and
7 ~ Gamma(a, ), then the marginal becomes

0r1),

m(x) =t (x; 2a, po, 3
a

» To derive this, marginalize first over the normal-normal conjugacy.
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Multinomial-Dirichlet conjugacy

» Assume x = (x1,...,X,) ~ Multinomial(m, 01, 60,,...,6,), with
01+ ---+ 6, =1, so that x; counts the number of results of type i
in m independent trials, if results of type i have probability 8;. The
probability mass function is

m!
w(x|61,...,0,) = m&?ﬁﬁ
> 0= (61,...,0,) with6; >0and >, 6; =1 has a Dirichlet
distribution with parameters ag, ..., «, if the density can be written
as
Moy +---+an)
Maq)...T(an)
» Prove that the Dirichlet family is a conjugate family to the
Multinomial likelhiood!
» With a Dirichlet(ay, ..., «,) prior, one can show that the probability
of observing a type i result in the next trial becomes

7(01,...,00 | Q1,y... an) = ot gt

;i + X;
Zj:l(aj +x5)
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Applied example: Forensic DNA matches

» DNA matching between a trace and a person may be used as proof
in criminal cases: For this, one needs to compute the strength of
evidence when there is a match at some investigated /oci.

» At an STR locus in a chromosome, a person has a particular allele
(variant): Variants there differ by the number of repetitions of a
short sequence (such as CAAT).

» The probability that a random person has a particular allele at this
chromosome needs to be computed.

» To do so, population databases of alleles are collected. A small
database might look like
10|11 |12 | 13| 14 | 15| 16| 17 | 18
1 10|58 [143| 93|02

» What is the probability that a random person has 17 repetitions as
his allele?

» It is common to use the Multinomial-Dirichlet model together with
pseudocounts, i.e., values for «;, for example a; = 0.5 or o; = 1.

» Probabilities get a reasonable value, instead of zero.
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The multivariate normal distribution

> We say X has a multivariate (n-variate) normal distribution, if it is a
real vector of length n with density

7(X) = Grgrrs o0 (5 X~ WX =)

where the vector p is the expectation and the n x n symmetric
matrix ¥ is the covariance matrix. |27%| is the determinant of 27 X%.

> We write X ~ Normal(u, X).

» Just as in the 1-dimensional case: If Y | X ~ Normal(AX + B, X;)
and X ~ Normal(u, o), and if we look at Y | X as a likelihood and
m(X) as a prior, then this is a conjugate prior.

» We usually express this by using that

> In the case above, the joint density for X and Y is multivariate
normal.

» For a multivariate normal vector, the conditional vector when fixing
one or more components in the vector is also multivariate normal.
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The joint multivariate normal distribution

» Assume Y | X ~ Normal(AX + B,X;) and X ~ Normal(zu, Xo).

Then
X 12 ZO ZOAt
(Y) ~ Normal ([Au + B} ! [AZO ATA + 7,

» One can prove this directly from the definitions, or use
> Prove first that the joint distribution must be multivariate normal.
» Then, compute the expectation and the covariance matrix of the
joint vector, using, e.g., the formulas for total expectation and
variation, or matrix algebra.
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The conditional and the marginal in a multivariate normal

distribution

Assume the joint distribution for two vectors 61 and 6, is multivariate
normal. Then

» If we integrate out one of them, e.g. 6, the marginal for 6 is
multivariate normal. The parameters can be read off the expectation
and the covariance matrix of the joint distribution.

> If we fix 6,, then the conditional distribution 6y | 6, is also
multivariate normal. In fact, if

1
01 p1| |[Pu Pr
(92> ~ Normal ([Mz] ’ {le Pzz] >

01 | 02 ~ Normal(uy — P;' Pia(Y — ), Pipt)

we have
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Elements of a proof

» Prove the algebraic matrix identity

(BEAIESEIBEA)
— (61 — 1+ P Pia(6s — 12))" Puy (61 — i + Pt Pra(62 — pi2))

+(02 — 112) (P22 — Pa1 P;1* P12) (02 — p12).

» Use the definition of the joint density for #; and 6, and rewrite it as
two factors, one depending only on 6,.
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