MSA101/MVE187 2021 Lecture 3
 Low-dimensional Bayesian inference Mixtures

Some multivariate conjugacies

Petter Mostad
Chalmers University

September 5, 2022

Review: Bayesian framework

- Prediction variable $Y_{\text {pred }}$, data $Y_{\text {data }}$, parameter θ.
- Specify a complete model by specifying prior $\pi(\theta)$, likelihood $\pi\left(Y_{\text {data }} \mid \theta\right)$, and prediction distribution $\pi\left(Y_{\text {pred }} \mid \theta\right)$.
- Derive the posterior $\pi\left(\theta \mid Y_{\text {data }}\right)$.
- Make predictions using

$$
\pi\left(Y_{\text {pred }} \mid Y_{\text {data }}\right)=\int \pi\left(Y_{\text {pred }} \mid \theta\right) \pi\left(\theta \mid Y_{\text {data }}\right) d \theta
$$

Ideas for practical computations

- Last time: Both likelihood and prior are from a list of elementary distributions, and are conjugate.
- Extension: Use discretization and computers: Works in low dimensions.
- Small extension: Use mixtures of priors.
- Small extension: Use multivariate conjugacies.
- Next time: Huge extension: Use simulation.

Bayesian inference with a discrete parameter θ

Assume θ has possible values $\theta_{1}, \ldots, \theta_{n}$.
\checkmark The prior $\pi(\theta)$ is represented as a vector $v=\left(v_{1}, \ldots, v_{n}\right)$:

$$
v_{i}=\pi\left(\theta_{i}\right)
$$

- The likelihood $\pi(y \mid \theta)$ is represented as a vector $w=\left(w_{1}, \ldots, w_{n}\right)$:

$$
w_{i}=\pi\left(y \mid \theta_{i}\right)
$$

- The posterior is represented as a vector $z=\left(z_{1}, \ldots, z_{n}\right)$:

$$
z_{i}=\frac{v_{i} \cdot w_{i}}{\sum_{j=1}^{n} v_{j} \cdot w_{j}}
$$

- The posterior predictive distribution can be computed for all values of $Y_{\text {pred }}$ as a sum:

$$
\pi\left(Y_{\text {pred }} \mid Y_{\text {data }}\right)=\sum_{i=1}^{n} \pi\left(Y_{\text {pred }} \mid \theta_{i}\right) z_{i}
$$

Example: An experimental production process

An experimental production process for an electronic component produces faulty components at a rate $\theta ; 17$ tests have produced 2 faulty components; you want to predict probability of at most 1 faulty component in the next batch of 10 .

- Prior (constructed based on earlier experience)
- Likelihood: Binomial($2 ; 17, \theta$)

- Prediction
$\sum_{\theta}(\operatorname{Binomial}(0 ; 10, \theta)+\operatorname{Binomial}(1 ; 10, \theta)) \pi(\theta \mid$ data $)=0.4642503$

Example: Braking distance for a bike, depending on speed

Braking distance for a bike has been measured at 5 different speeds: Data is $\left(x_{1}, y_{1}\right), \ldots,\left(x_{5}, y_{5}\right)$. At speed 30 , what is the probability that breaking distance will be more than 5 ?

- Model: We assume $y_{i} \mid a, b \sim \operatorname{Normal}\left(a x_{i}+b x_{i}^{2}, 0.8^{2}\right)$, and use a discrete prior on a grid for parameters (a, b).

- Prior:

Example: Braking distance for a bike

- Likelihood: $\pi($ data $\mid(a, b))=\prod_{i=1}^{5} \operatorname{Normal}\left(y_{i} ; a x_{i}+b x_{i}^{2}, 0.8^{2}\right)$
- Likelihood and posterior computed:

- Prediction:

$$
\begin{aligned}
& \operatorname{Pr}(y>5 \mid x=30, \text { data }) \\
= & \sum_{a, b}\left(\int_{5}^{\infty} \operatorname{Normal}\left(y ; a 30+b 30^{2}, 0.8^{2}\right) d y\right) \pi(a, b \mid \text { data }) \\
= & 0.9396133
\end{aligned}
$$

Choosing the prior

- Two main strategies: Aiming for non-informative or informative priors.
- Non-informative examples:
- With conjugacies, using improper distributions like Gamma(0,0) or Beta $(0,0)$
- "Flat" densities...(but depends on scale!)
- Informative:
- Use posteriors based on previous data, or
- Check out the prior predictive: Does it "look reasonable" compared to what you expect for such data?

The curse of dimensionality

- What happens with the discretization if θ is a high-dimensional variable?
- In practice, we have to find other methods than discretization.

Numerical integration

The integrals of Bayesian inference

$$
\pi\left(\theta \mid Y_{\text {data }}\right)=\frac{\pi\left(Y_{\text {data }} \mid \theta\right) \pi(\theta)}{\int_{\theta} \pi\left(Y_{\text {data }} \mid \theta\right) \pi(\theta) d \theta}
$$

and

$$
\begin{aligned}
\pi\left(Y_{\text {pred }} \mid Y_{\text {data }}\right) & =\int_{\theta} \pi\left(Y_{\text {pred }} \mid \theta\right) \pi\left(\theta \mid Y_{\text {data }}\right) d \theta \\
& =\frac{\int_{\theta} \pi\left(Y_{\text {pred }} \mid \theta\right) \pi\left(Y_{\text {data }} \mid \theta\right) \pi(\theta) d \theta}{\int_{\theta} \pi\left(Y_{\text {data }} \mid \theta\right) \pi(\theta) d \theta}
\end{aligned}
$$

can be computed with numerical integration.

- Can work slightly better than discretization (after all discretization is a primitive form of numerical integration).
- Suffers from the same curse of dimensionality as discretization.

Mixtures

A density written as a linear combination of other densities is called a mixture (where $\sum_{i=1}^{n} \nu_{i}=1$):

$$
\pi(\theta)=\sum_{i=1}^{n} \nu_{i} \pi_{i}(\theta)
$$

- Using a mixture prior gives a mixture prior predictive distribution:

$$
\pi(y)=\int \pi(y \mid \theta) \sum_{i=1}^{n} \nu_{i} \pi_{i}(\theta) d \theta=\sum_{i=1}^{n} \nu_{i} \int \pi(y \mid \theta) \pi_{i}(\theta) d \theta=\sum_{i=1}^{n} \nu_{i} \pi_{i}(y)
$$

- Defining $\pi_{i}(\theta \mid y)=\frac{\pi(y \mid \theta) \pi_{i}(\theta)}{\pi_{i}(y)}$, we also get a mixture posterior:

$$
\begin{aligned}
\pi(\theta \mid y) & =\frac{\pi(y \mid \theta) \pi(\theta)}{\pi(y)}=\frac{\sum_{i=1}^{n} \nu_{i} \pi(y \mid \theta) \pi_{i}(\theta)}{\sum_{j=1}^{n} \nu_{j} \pi_{j}(y)}=\frac{\sum_{i=1}^{n} \nu_{i} \pi_{i}(y) \pi_{i}(\theta \mid y)}{\sum_{j=1}^{n} \nu_{j} \pi_{j}(y)} \\
& =\sum_{i=1}^{n}\left(\frac{\nu_{i} \pi_{i}(y)}{\sum_{j=1}^{n} \mu_{j} \pi_{j}(y)}\right) \pi_{i}(\theta \mid y)
\end{aligned}
$$

- Finally, a mixture posterior predictive distribution:

$$
\pi\left(y_{\text {pred }} \mid y\right)=\int \pi\left(y_{\text {pred }} \mid \theta\right) \pi(\theta \mid y) d \theta=\sum_{i=1}^{n}\left(\frac{\nu_{i} \pi_{i}(y)}{\sum_{j=1}^{n} \mu_{j} \pi_{j}(y)}\right) \pi_{i}\left(y_{\text {pred }} \mid y\right)
$$

Example: More on braking bikes

We now use the following pixture of priors:

- We get the updated weights

$$
\frac{0.95 \cdot \pi_{1}(\text { data })}{0.95 \cdot \pi_{1}(\text { data })+0.05 \cdot \pi_{2}(\text { data })}=0.8530929
$$

for Prior 1 and $1-0.8530929=0.1469071$ for Prior 2 .

- Using combined prior, the prediction hardly changes: 0.9399131 (before it was 0.9396133).

Mixtures when priors are conjugate

- When all the priors $\pi_{1}(\theta), \ldots, \pi_{n}(\theta)$ are conjugate to the likelihood $\pi($ data $\mid \theta)$, the mixture is also conjugate!
- Is a very powerful way to make families of conjugate priors more flexible!
- Note that we have formulas for all the weights and the posteriors occurring, no integration necessary.

Example: Using mixtures

If $y \sim \operatorname{Geometric}(p)$ with $0<p<1$ then $\pi(y \mid p)=p(1-p)^{y}$, and $p \sim \operatorname{Beta}(\alpha, \beta)$ is a conjugate family.

- If in some applied context our prior information is represented by, e.g., a histogram, we can model it as a Beta mixture:

Histogram of storedBetaData

Prior

- In this simple case, you could alternatively use discretization.

Multivariate conjugacy example: The normal likelihood, no parameters known

- Assume $y \sim \operatorname{Normal}(\mu, 1 / \tau)$, with both μ and τ uncertain. The likelihood becomes

$$
\pi(y \mid \mu, \tau) \propto_{\mu, \tau} \tau^{1 / 2} \exp \left(-\frac{\tau}{2}(x-\mu)^{2}\right)
$$

- Then the Normal-Gamma family is conjugate: The pair (μ, τ) has a Normal-Gamma distribution with parameters $\mu_{0}, \lambda>0, \alpha>0, \beta>0$ if the density has the form

$$
\pi\left(\mu, \tau \mid \mu_{0}, \lambda, \alpha, \beta\right)=\frac{\beta^{\alpha} \sqrt{\lambda}}{\Gamma(\alpha) \sqrt{2 \pi}} \tau^{\alpha-1 / 2} \exp \left(-\beta \tau-\frac{\lambda \tau}{2}\left(\mu-\mu_{0}\right)^{2}\right)
$$

- Note: If (μ, τ) has the Normal-Gamma distribution above, we have $\tau \sim \operatorname{Gamma}(\alpha, \beta)$ and $\mu \mid \tau \sim \operatorname{Normal}\left(\mu_{0}, 1 /(\lambda \tau)\right)$.

Computing the posterior

- Assume $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ sampled from $\operatorname{Normal}(\mu, 1 / \tau)$.
- Assume prior

$$
\tau \sim \operatorname{Gamma}(\alpha, \beta) \quad \text { and } \quad \mu \mid \tau \sim \operatorname{Normal}\left(\mu_{0}, 1 /(\lambda \tau)\right)
$$

- Computing the posterior density using our proportionality method, the result is a Normal-Gamma density which can be expressed as

$$
\begin{aligned}
\tau \mid x & \sim \operatorname{Gamma}\left(\alpha+\frac{n}{2}, \beta+\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+\frac{n \lambda}{\lambda+n} \frac{\left(\bar{x}-\mu_{0}\right)^{2}}{2}\right) \\
\mu \mid \tau, x & \sim \operatorname{Normal}\left(\frac{\lambda \mu_{0}+n \bar{x}}{\lambda+n}, \frac{1}{(\lambda+n) \tau}\right)
\end{aligned}
$$

- Computations like these can get hairy; if you are lazy like me, consult, e.g., Wikipedia.
- Using improper prior $\pi(\mu, \tau) \propto_{\mu, \tau} 1 / \tau$ gives posterior $\tau \left\lvert\, x \sim \operatorname{Gamma}\left(\frac{n-1}{2}, \frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right)\right.$ and $\mu \mid \tau, x \sim \operatorname{Normal}\left(\bar{x}, \frac{1}{n \tau}\right)$.
- NOTE: The expectation of the posterior for τ then becomes 1 divided by the classical variance estimator, and the expectation for μ becomes \bar{x}.

Predictive distributions

- Given parameters $\nu>0, \mu$, and σ^{2}, a real variable x has a generalized \mathbf{t}-distribution, $x \sim \mathrm{t}\left(\nu, \mu, \sigma^{2}\right)$, when the density is

$$
t\left(x ; \nu, \mu, \sigma^{2}\right)=\frac{1}{\sqrt{\nu \sigma^{2}} B(\nu / 2,1 / 2)}\left[1+\frac{1}{\nu}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]^{-\frac{\nu+1}{2}}
$$

- When $x \left\lvert\, \tau \sim \operatorname{Normal}\left(\mu, \frac{1}{\lambda \tau}\right)\right.$ and $\tau \sim \operatorname{Gamma}(\alpha, \beta)$, the marginal (i.e. prior predictive) becomes

$$
\pi(x)=\mathrm{t}\left(x ; 2 \alpha, \mu, \frac{\beta}{\alpha \lambda}\right)
$$

- When $x|\mu, \tau \sim \operatorname{Normal}(\mu, 1 / \tau), \mu| \tau \sim \operatorname{Normal}\left(\mu_{0}, \frac{1}{\lambda \tau}\right)$, and $\tau \sim \operatorname{Gamma}(\alpha, \beta)$, then the marginal becomes

$$
\pi(x)=\mathrm{t}\left(x ; 2 \alpha, \mu_{0}, \frac{\beta(\lambda+1)}{\alpha \lambda}\right) .
$$

- To derive this, marginalize first over the normal-normal conjugacy.

Multinomial-Dirichlet conjugacy

- Assume $x=\left(x_{1}, \ldots, x_{n}\right) \sim \operatorname{Multinomial}\left(m, \theta_{1}, \theta_{2}, \ldots, \theta_{n}\right)$, with $\theta_{1}+\cdots+\theta_{n}=1$, so that x_{i} counts the number of results of type i in m independent trials, if results of type i have probability θ_{i}. The probability mass function is

$$
\pi\left(x \mid \theta_{1}, \ldots, \theta_{n}\right)=\frac{m!}{x_{1}!\ldots x_{k}!} \theta_{1}^{x_{1}} \ldots \theta_{n}^{x_{n}}
$$

- $\theta=\left(\theta_{1}, \ldots, \theta_{n}\right)$ with $\theta_{i}>0$ and $\sum_{i=1}^{n} \theta_{i}=1$ has a Dirichlet distribution with parameters $\alpha_{1}, \ldots, \alpha_{n}$ if the density can be written as

$$
\pi\left(\theta_{1}, \ldots, \theta_{n} \mid \alpha_{1}, \ldots, \alpha_{n}\right)=\frac{\Gamma\left(\alpha_{1}+\cdots+\alpha_{n}\right)}{\Gamma\left(\alpha_{1}\right) \ldots \Gamma\left(\alpha_{n}\right)} \theta_{1}^{\alpha_{1}-1} \ldots \theta_{n}^{\alpha_{n}-1}
$$

- Prove that the Dirichlet family is a conjugate family to the Multinomial likelhiood!
- With a Dirichlet $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ prior, one can show that the probability of observing a type i result in the next trial becomes

$$
\frac{\alpha_{i}+x_{i}}{\sum_{j=1}^{n}\left(\alpha_{j}+x_{j}\right)}
$$

Applied example: Forensic DNA matches

- DNA matching between a trace and a person may be used as proof in criminal cases: For this, one needs to compute the strength of evidence when there is a match at some investigated loci.
- At an STR locus in a chromosome, a person has a particular allele (variant): Variants there differ by the number of repetitions of a short sequence (such as CAAT).
- The probability that a random person has a particular allele at this chromosome needs to be computed.
- To do so, population databases of alleles are collected. A small database might look like

10	11	12	13	14	15	16	17	18
1	0	5	89	143	9	3	0	2

- What is the probability that a random person has 17 repetitions as his allele?
- It is common to use the Multinomial-Dirichlet model together with pseudocounts, i.e., values for α_{i}, for example $\alpha_{i}=0.5$ or $\alpha_{i}=1$.
- Probabilities get a reasonable value, instead of zero.

The multivariate normal distribution

- We say X has a multivariate (n-variate) normal distribution, if it is a real vector of length n with density

$$
\pi(X)=\frac{1}{|2 \pi \Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}(X-\mu) \Sigma^{-1}(X-\mu)^{t}\right)
$$

where the vector μ is the expectation and the $n \times n$ symmetric matrix Σ is the covariance matrix. $|2 \pi \Sigma|$ is the determinant of $2 \pi \Sigma$.

- We write $X \sim \operatorname{Normal}(\mu, \Sigma)$.
- Just as in the 1-dimensional case: If $Y \mid X \sim \operatorname{Normal}\left(A X+B, \Sigma_{1}\right)$ and $X \sim \operatorname{Normal}\left(\mu, \Sigma_{0}\right)$, and if we look at $Y \mid X$ as a likelihood and $\pi(X)$ as a prior, then this is a conjugate prior.
- We usually express this by using that
- In the case above, the joint density for X and Y is multivariate normal.
- For a multivariate normal vector, the conditional vector when fixing one or more components in the vector is also multivariate normal.

The joint multivariate normal distribution

- Assume $Y \mid X \sim \operatorname{Normal}\left(A X+B, \Sigma_{1}\right)$ and $X \sim \operatorname{Normal}\left(\mu, \Sigma_{0}\right)$. Then

$$
\binom{X}{Y} \sim \text { Normal }\left(\left[\begin{array}{c}
\mu \\
A \mu+B
\end{array}\right],\left[\begin{array}{cc}
\Sigma_{0} & \Sigma_{0} A^{t} \\
A \Sigma_{0} & A \Sigma_{0} A^{t}+\Sigma_{1}
\end{array}\right]\right)
$$

- One can prove this directly from the definitions, or use
- Prove first that the joint distribution must be multivariate normal.
- Then, compute the expectation and the covariance matrix of the joint vector, using, e.g., the formulas for total expectation and variation, or matrix algebra.

The conditional and the marginal in a multivariate normal distribution

Assume the joint distribution for two vectors θ_{1} and θ_{2} is multivariate normal. Then

- If we integrate out one of them, e.g. θ_{2}, the marginal for θ_{1} is multivariate normal. The parameters can be read off the expectation and the covariance matrix of the joint distribution.
- If we fix θ_{2}, then the conditional distribution $\theta_{1} \mid \theta_{2}$ is also multivariate normal. In fact, if

$$
\binom{\theta_{1}}{\theta_{2}} \sim \text { Normal }\left(\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right],\left[\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right]^{-1}\right)
$$

we have

$$
\theta_{1} \mid \theta_{2} \sim \operatorname{Normal}\left(\mu_{1}-P_{11}^{-1} P_{12}\left(Y-\mu_{2}\right), P_{11}^{-1}\right)
$$

Elements of a proof

- Prove the algebraic matrix identity

$$
\begin{aligned}
& \left(\left[\begin{array}{l}
\theta_{1} \\
\theta_{2}
\end{array}\right]-\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]\right)^{t}\left[\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right]\left(\left[\begin{array}{l}
\theta_{1} \\
\theta_{2}
\end{array}\right]-\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]\right) \\
= & \left(\theta_{1}-\mu_{1}+P_{11}^{-1} P_{12}\left(\theta_{2}-\mu_{2}\right)\right)^{t} P_{11}\left(\theta_{1}-\mu_{1}+P_{11}^{-1} P_{12}\left(\theta_{2}-\mu_{2}\right)\right) \\
& +\left(\theta_{2}-\mu_{2}\right)^{t}\left(P_{22}-P_{21} P_{11}^{-1} P_{12}\right)\left(\theta_{2}-\mu_{2}\right) .
\end{aligned}
$$

- Use the definition of the joint density for θ_{1} and θ_{2}, and rewrite it as two factors, one depending only on θ_{2}.

