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Review: Bayesian framework

▶ Prediction variable Ypred , data Ydata, parameter θ.

▶ Specify a complete model by specifying prior π(θ), likelihood
π(Ydata | θ), and prediction distribution π(Ypred | θ).

▶ Derive the posterior π(θ | Ydata).

▶ Make predictions using

π(Ypred | Ydata) =

∫
π(Ypred | θ)π(θ | Ydata) dθ
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Ideas for practical computations

▶ Last time: Both likelihood and prior are from a list of elementary
distributions, and are conjugate.

▶ Extension: Use discretization and computers: Works in low
dimensions.

▶ Small extension: Use mixtures of priors.

▶ Small extension: Use multivariate conjugacies.

▶ Next time: Huge extension: Use simulation.
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Bayesian inference with a discrete parameter θ

Assume θ has possible values θ1, . . . , θn.

▶ The prior π(θ) is represented as a vector v = (v1, . . . , vn):

vi = π(θi ).

▶ The likelihood π(y | θ) is represented as a vector w = (w1, . . . ,wn):

wi = π(y | θi ).

▶ The posterior is represented as a vector z = (z1, . . . , zn):

zi =
vi · wi∑n
j=1 vj · wj

.

▶ The posterior predictive distribution can be computed for all values
of Ypred as a sum:

π(Ypred | Ydata) =
n∑

i=1

π(Ypred | θi )zi .
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Example: An experimental production process

An experimental production process for an electronic component
produces faulty components at a rate θ; 17 tests have produced 2 faulty
components; you want to predict probability of at most 1 faulty
component in the next batch of 10.

▶ Prior (constructed based on earlier experience)

▶ Likelihood: Binomial(2; 17, θ)

▶
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▶ Prediction∑
θ(Binomial(0; 10, θ) + Binomial(1; 10, θ))π(θ | data) = 0.4642503
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Example: Braking distance for a bike, depending on speed

Braking distance for a bike has been mea-
sured at 5 different speeds: Data is
(x1, y1), . . . , (x5, y5). At speed 30, what is
the probability that breaking distance will be
more than 5?
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▶ Model: We assume yi | a, b ∼ Normal(axi + bx2i , 0.8
2), and use a

discrete prior on a grid for parameters (a, b).

▶ Prior:
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Example: Braking distance for a bike

▶ Likelihood: π(data | (a, b)) =
∏5

i=1 Normal(yi ; axi + bx2i , 0.8
2)

▶ Likelihood and posterior computed:
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▶ Prediction:

Pr(y > 5 | x = 30, data)

=
∑
a,b

(∫ ∞

5

Normal(y ; a30 + b302, 0.82) dy

)
π(a, b | data)

= 0.9396133
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Choosing the prior

▶ Two main strategies: Aiming for non-informative or informative
priors.

▶ Non-informative examples:
▶ With conjugacies, using improper distributions like Gamma(0, 0) or

Beta(0, 0)
▶ ”Flat” densities...(but depends on scale!)

▶ Informative:
▶ Use posteriors based on previous data, or
▶ Check out the prior predictive: Does it ”look reasonable” compared

to what you expect for such data?
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The curse of dimensionality

▶ What happens with the discretization if θ is a
high-dimensional variable?

▶ In practice, we have to find other methods than discretization.

9 / 23



Numerical integration

The integrals of Bayesian inference

π(θ | Ydata) =
π(Ydata | θ)π(θ)∫

θ
π(Ydata | θ)π(θ) dθ

and

π(Ypred | Ydata) =

∫
θ

π(Ypred | θ)π(θ | Ydata) dθ

=

∫
θ
π(Ypred | θ)π(Ydata | θ)π(θ) dθ∫

θ
π(Ydata | θ)π(θ) dθ

can be computed with numerical integration.

▶ Can work slightly better than discretization (after all discretization is
a primitive form of numerical integration).

▶ Suffers from the same curse of dimensionality as discretization.
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Mixtures

A density written as a linear combination of other densities is called a mixture
(where

∑n
i=1 νi = 1):

π(θ) =
n∑

i=1

νiπi (θ).

▶ Using a mixture prior gives a mixture prior predictive distribution:

π(y) =

∫
π(y | θ)

n∑
i=1

νiπi (θ) dθ =
n∑

i=1

νi

∫
π(y | θ)πi (θ) dθ =

n∑
i=1

νiπi (y).

▶ Defining πi (θ | y) = π(y|θ)πi (θ)
πi (y)

, we also get a mixture posterior:

π(θ | y) =
π(y | θ)π(θ)

π(y)
=

∑n
i=1 νiπ(y | θ)πi (θ)∑n

j=1 νjπj(y)
=

∑n
i=1 νiπi (y)πi (θ | y)∑n

j=1 νjπj(y)

=
n∑

i=1

(
νiπi (y)∑n
j=1 µjπj(y)

)
πi (θ | y).

▶ Finally, a mixture posterior predictive distribution:

π(ypred | y) =
∫

π(ypred | θ)π(θ | y) dθ =
n∑

i=1

(
νiπi (y)∑n
j=1 µjπj(y)

)
πi (ypred | y).
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Example: More on braking bikes

We now use the following pixture of priors:
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▶ We get the updated weights

0.95 · π1(data)

0.95 · π1(data) + 0.05 · π2(data)
= 0.8530929

for Prior 1 and 1− 0.8530929 = 0.1469071 for Prior 2.

▶ Using combined prior, the prediction hardly changes: 0.9399131
(before it was 0.9396133).
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Mixtures when priors are conjugate

▶ When all the priors π1(θ), . . . , πn(θ) are conjugate to the likelihood
π(data | θ), the mixture is also conjugate!

▶ Is a very powerful way to make families of conjugate priors more
flexible!

▶ Note that we have formulas for all the weights and the posteriors
occurring, no integration necessary.
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Example: Using mixtures

If y ∼ Geometric(p) with 0 < p < 1 then π(y | p) = p(1− p)y , and
p ∼ Beta(α, β) is a conjugate family.

▶ If in some applied context our prior information is represented by,
e.g., a histogram, we can model it as a Beta mixture:

▶

Histogram of storedBetaData

storedBetaData

F
re

q
u
e
n
c
y

0.0 0.2 0.4 0.6 0.8 1.0

0
5
0

1
0
0

1
5
0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

Prior

x

V
e
c
to

ri
z
e
(d

e
n
s
it
y
)(

x
)

▶ In this simple case, you could alternatively use discretization.
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Multivariate conjugacy example:
The normal likelihood, no parameters known

▶ Assume y ∼ Normal(µ, 1/τ), with both µ and τ uncertain. The
likelihood becomes

π(y | µ, τ) ∝µ,τ τ 1/2 exp
(
−τ

2
(x − µ)2

)
▶ Then the Normal-Gamma family is conjugate: The pair (µ, τ) has a

Normal-Gamma distribution with parameters µ0, λ > 0, α > 0, β > 0
if the density has the form

π(µ, τ | µ0, λ, α, β) =
βα

√
λ

Γ(α)
√
2π

τα−1/2 exp

(
−βτ − λτ

2
(µ− µ0)

2

)
▶ Note: If (µ, τ) has the Normal-Gamma distribution above, we have

τ ∼ Gamma(α, β) and µ | τ ∼ Normal(µ0, 1/(λτ)).
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Computing the posterior

▶ Assume x = (x1, x2, . . . , xn) sampled from Normal(µ, 1/τ).
▶ Assume prior

τ ∼ Gamma(α, β) and µ | τ ∼ Normal(µ0, 1/(λτ))

▶ Computing the posterior density using our proportionality method,
the result is a Normal-Gamma density which can be expressed as

τ | x ∼ Gamma

(
α+

n

2
, β +

1

2

n∑
i=1

(xi − x)2 +
nλ

λ+ n

(x − µ0)
2

2

)

µ | τ, x ∼ Normal

(
λµ0 + nx

λ+ n
,

1

(λ+ n)τ

)
▶ Computations like these can get hairy; if you are lazy like me,

consult, e.g., Wikipedia.
▶ Using improper prior π(µ, τ) ∝µ,τ 1/τ gives posterior

τ | x ∼ Gamma( n−1
2 , 1

2

∑n
i=1(xi − x)2) and µ | τ, x ∼ Normal(x , 1

nτ ).
▶ NOTE: The expectation of the posterior for τ then becomes 1

divided by the classical variance estimator, and the expectation for µ
becomes x .

16 / 23



Predictive distributions

▶ Given parameters ν > 0, µ, and σ2, a real variable x has a
generalized t-distribution, x ∼ t(ν, µ, σ2), when the density is

t(x ; ν, µ, σ2) =
1√

νσ2B(ν/2, 1/2)

[
1 +

1

ν

(
x − µ

σ

)2
]− ν+1

2

▶ When x | τ ∼ Normal(µ, 1
λτ ) and τ ∼ Gamma(α, β), the marginal

(i.e. prior predictive) becomes

π(x) = t

(
x ; 2α, µ,

β

αλ

)
▶ When x | µ, τ ∼ Normal(µ, 1/τ), µ | τ ∼ Normal(µ0,

1
λτ ), and

τ ∼ Gamma(α, β), then the marginal becomes

π(x) = t

(
x ; 2α, µ0,

β(λ+ 1)

αλ

)
.

▶ To derive this, marginalize first over the normal-normal conjugacy.
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Multinomial-Dirichlet conjugacy

▶ Assume x = (x1, . . . , xn) ∼ Multinomial(m, θ1, θ2, . . . , θn), with
θ1 + · · ·+ θn = 1, so that xi counts the number of results of type i
in m independent trials, if results of type i have probability θi . The
probability mass function is

π(x | θ1, . . . , θn) =
m!

x1! . . . xk !
θx11 . . . θxnn

▶ θ = (θ1, . . . , θn) with θi > 0 and
∑n

i=1 θi = 1 has a Dirichlet
distribution with parameters α1, . . . , αn if the density can be written
as

π(θ1, . . . , θn | α1, . . . , αn) =
Γ(α1 + · · ·+ αn)

Γ(α1) . . . Γ(αn)
θα1−1
1 . . . θαn−1

n

▶ Prove that the Dirichlet family is a conjugate family to the
Multinomial likelhiood!

▶ With a Dirichlet(α1, . . . , αn) prior, one can show that the probability
of observing a type i result in the next trial becomes

αi + xi∑n
j=1(αj + xj)

.
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Applied example: Forensic DNA matches

▶ DNA matching between a trace and a person may be used as proof
in criminal cases: For this, one needs to compute the strength of
evidence when there is a match at some investigated loci.

▶ At an STR locus in a chromosome, a person has a particular allele
(variant): Variants there differ by the number of repetitions of a
short sequence (such as CAAT).

▶ The probability that a random person has a particular allele at this
chromosome needs to be computed.

▶ To do so, population databases of alleles are collected. A small
database might look like
10 11 12 13 14 15 16 17 18
1 0 5 89 143 9 3 0 2

▶ What is the probability that a random person has 17 repetitions as
his allele?

▶ It is common to use the Multinomial-Dirichlet model together with
pseudocounts, i.e., values for αi , for example αi = 0.5 or αi = 1.

▶ Probabilities get a reasonable value, instead of zero.
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The multivariate normal distribution

▶ We say X has a multivariate (n-variate) normal distribution, if it is a
real vector of length n with density

π(X ) =
1

|2πΣ|1/2
exp

(
−1

2
(X − µ)Σ−1(X − µ)t

)
where the vector µ is the expectation and the n × n symmetric
matrix Σ is the covariance matrix. |2πΣ| is the determinant of 2πΣ.

▶ We write X ∼ Normal(µ,Σ).

▶ Just as in the 1-dimensional case: If Y | X ∼ Normal(AX + B,Σ1)
and X ∼ Normal(µ,Σ0), and if we look at Y | X as a likelihood and
π(X ) as a prior, then this is a conjugate prior.

▶ We usually express this by using that
▶ In the case above, the joint density for X and Y is multivariate

normal.
▶ For a multivariate normal vector, the conditional vector when fixing

one or more components in the vector is also multivariate normal.
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The joint multivariate normal distribution

▶ Assume Y | X ∼ Normal(AX + B,Σ1) and X ∼ Normal(µ,Σ0).
Then (

X
Y

)
∼ Normal

([
µ

Aµ+ B

]
,

[
Σ0 Σ0A

t

AΣ0 AΣ0A
t +Σ1

])
▶ One can prove this directly from the definitions, or use

▶ Prove first that the joint distribution must be multivariate normal.
▶ Then, compute the expectation and the covariance matrix of the

joint vector, using, e.g., the formulas for total expectation and
variation, or matrix algebra.
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The conditional and the marginal in a multivariate normal
distribution

Assume the joint distribution for two vectors θ1 and θ2 is multivariate
normal. Then

▶ If we integrate out one of them, e.g. θ2, the marginal for θ1 is
multivariate normal. The parameters can be read off the expectation
and the covariance matrix of the joint distribution.

▶ If we fix θ2, then the conditional distribution θ1 | θ2 is also
multivariate normal. In fact, if(

θ1
θ2

)
∼ Normal

([
µ1

µ2

]
,

[
P11 P12

P21 P22

]−1
)

we have

θ1 | θ2 ∼ Normal(µ1 − P−1
11 P12(Y − µ2),P

−1
11 )
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Elements of a proof

▶ Prove the algebraic matrix identity([
θ1
θ2

]
−
[

µ1

µ2

])t [
P11 P12

P21 P22

]([
θ1
θ2

]
−
[

µ1

µ2

])
=

(
θ1 − µ1 + P−1

11 P12(θ2 − µ2)
)t
P11

(
θ1 − µ1 + P−1

11 P12(θ2 − µ2)
)

+(θ2 − µ2)
t(P22 − P21P

−1
11 P12)(θ2 − µ2).

▶ Use the definition of the joint density for θ1 and θ2, and rewrite it as
two factors, one depending only on θ2.
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