MSA101/MVE187 2022 Lecture 4

Inference by simulation. Monte Carlo Integration Basic simulation methods
Rejection sampling. Priors

Petter Mostad
Chalmers University

September 7, 2022

Predictions using simulation

- We may want to make predictions by simulating from marginal distributions, e.g.,

$$
\begin{aligned}
\pi(y) & =\int \pi(y \mid \theta) \pi(\theta) d \theta \\
\pi\left(y \mid y_{\text {data }}\right) & =\int \pi(y \mid \theta) \pi\left(\theta \mid y_{\text {data }}\right) d \theta
\end{aligned}
$$

- Generate a sample $\left(\theta_{1}, y_{1}\right), \ldots,\left(\theta_{N}, y_{n}\right)$ from the joint density!
- Generate the sample by first simulating $\theta_{1}, \ldots, \theta_{N}$ from $\pi(\theta)$ (or $\left.\pi\left(\theta \mid y_{\text {data }}\right)\right)$ and then simulate y_{i} from $\pi\left(y \mid \theta_{i}\right)$ for $i=1, \ldots, N$.
- Then y_{1}, \ldots, y_{N} is a sample from the marginal.

Example: Simulating from the prior predictive

We go back to the case of braking bikes. Data was $\left(x_{1}, y_{1}\right), \ldots,\left(x_{5}, y_{5}\right)$ where x_{i} was speed and y_{i} was braking distance.

- We now use the model $y_{i} \mid x_{i}, a, b, d \sim \operatorname{Normal}\left(a x_{i}+b x_{i}^{2}, d^{2}\right)$ and we need a prior for the three parameters a, b, d.
- For simplicity we try out
$a \sim \operatorname{Uniform}\left[A_{0}, A_{1}\right] \quad b \sim \operatorname{Uniform}\left[B_{0}, B_{1}\right] \quad d \sim \operatorname{Uniform}\left[D_{0}, D_{1}\right]$ for different values $A_{0}, A_{1}, B_{0}, B_{1}, D_{0}, D_{1}$, and simulate from the prior predictive to see if we get something reasonable.
- Values ($0.1,0.3,0,0.005,0.5,2$) produce

or, plotted differently,

Predictions using simulation in a different way

- Sometimes we want to compute probabilities $\pi(y)$ for specific values of y. We can use

$$
\begin{aligned}
\pi(y) & =\int \pi(y \mid \theta) \pi(\theta) d \theta=\mathrm{E}_{\theta}[\pi(y \mid \theta)] \\
\pi\left(y \mid y_{\text {data }}\right) & =\int \pi(y \mid \theta) \pi\left(\theta \mid y_{\text {data }}\right) d \theta=\mathrm{E}_{\theta \mid y_{\text {data }}}[\pi(y \mid \theta)]
\end{aligned}
$$

- Idea: Approximate the expectation by generating a sample $\theta_{1}, \ldots, \theta_{N}$ from the relevant distribution and average over this sample.
- NOTE: This way to approximate the integral does not suffer from the curse of dimensionality!

Monte Carlo Integration

Assume $\theta_{1}, \theta_{2}, \ldots, \theta_{N}$ is a random sample from $\pi(\theta \mid y)$.
$-\operatorname{Pr}(\theta>z) \approx \frac{\# \theta_{i} \text { 's above } z}{N}$.

- We can rewrite this in a fancy way as

$$
\mathrm{E}_{\theta \mid y}(I(\theta>z))=\int I(\theta>z) \pi(\theta \mid y) d \theta \approx \frac{1}{N} \sum_{i=1}^{N} I\left(\theta_{i}>z\right)
$$

- More generally (assuming the expectation exists)

$$
\mathrm{E}_{\theta \mid y}(f(\theta))=\int f(\theta) \pi(\theta \mid y) d \theta \approx \frac{1}{N} \sum_{i=1}^{N} f\left(\theta_{i}\right)
$$

- Formally, according to the Strong Law of large numbers,

$$
\operatorname{Pr}\left(\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} f\left(\theta_{i}\right)=\mathrm{E}(f(\theta))\right)=1
$$

where the expectation is taken over a distribution from which $\theta_{1}, \ldots, \theta_{N}$ is a random sample.

Toy example: The Binomial

We want to predict the probability of 2 successes in 7 trials, with probability of success θ, when $\theta \sim \operatorname{Beta}(7.3,11.9)$.

- For example, Beta(7.3,11.9) could be the posterior after having observed some earlier data.
- Using conjugacy, we can compute

Beta-Binomial $(2 ; 7,7.3,11.9)=\binom{7}{2} \frac{B(2+7.3,5+11.9)}{B(7.3,11.9)}=0.2490633$

- Using simulation ($N=10000$) we get (for example) 0.254
- Using Monte Carlo integration ($N=10000$) we get (for example) 0.2504272

Small example: properties of the posterior

If $\theta=(\alpha, \beta, \gamma)$ is the parameter vector, how do you find the posterior probability that $\alpha>\beta^{2}$ using Monte Carlo integration?

- We generate a set of vectors $\theta_{1}, \ldots, \theta_{N}$ from the posterior for θ given $y_{\text {data }}$.
- Approximate

$$
\operatorname{Pr}\left(\alpha>\beta^{2} \mid y_{\text {data }}\right) \approx \frac{1}{N} \sum_{i=1}^{N} I\left(\alpha_{i}>\beta_{i}^{2}\right)
$$

where $\theta_{i}=\left(\alpha_{i}, \beta_{i}, \gamma_{i}\right)$.

Example: Approximating quantiles

- Recall: A 95% credibility interval for a random variable θ is an interval so that the probability that θ is in the interval is 95%.
- A possible credibility interval for θ will be $\left[z_{0}, z_{1}\right]$ where

$$
\operatorname{Pr}\left[\theta<z_{0}\right]=0.025 \quad \text { and } \quad \operatorname{Pr}\left[\theta \leq z_{1}\right]=0.975 .
$$

- Approximate z_{0} and z_{1} as follows:

1. Simulate a sample $\theta_{1}, \theta_{2}, \ldots, \theta_{N}$.
2. Order it by size to find the 2.5 th and 97.5 th empirical quantiles.

- In R, use quantile(theta, c(0.025, 0.975)).

Accuracy of Monte Carlo integration

- Assume $\theta_{1}, \theta_{2}, \ldots, \theta_{N}$ is a random sample from $\pi(\theta \mid y)$. The Central Limit Theorem (CLT) states that, approximately for large N,

$$
\frac{1}{N} \sum_{i=1}^{N} f\left(\theta_{i}\right) \sim \operatorname{Normal}\left(\mathrm{E}_{\theta \mid y}(f(\theta)), \frac{\operatorname{Var}_{\theta_{\mid y}}(f(\theta))}{N}\right)
$$

as long as the first two moments of $f(\theta)$ exist.

- Transferring to a Bayesian setting (and using a flat prior) we get that, after sampling $\theta_{1}, \ldots, \theta_{N}$, an approximate 95% credibility interval for $\mathrm{E}_{\theta \mid y}(f(\theta))$ is

$$
\frac{1}{N} \sum_{i=1}^{N} f\left(\theta_{i}\right) \pm 1.96 \frac{1}{\sqrt{N}} \sqrt{\operatorname{Var}_{\theta \mid y}(f(\theta))}
$$

- If we write $\overline{f(\theta)}=\sum_{i=1}^{N} f\left(\theta_{i}\right) / N$ we may approximate

$$
\operatorname{Var}_{\theta \mid y}(f(\theta)) \approx s^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(f\left(\theta_{i}\right)-\overline{f(\theta)}\right)^{2}
$$

Example: Returning to Binomial example

We want to predict the probability of 2 successes in 7 trials, with probability of success θ, when $\theta \sim \operatorname{Beta}(7.3,11.9)$.

- Find this using Monte carlo integration as follows:

1. Simulate $\theta_{1}, \ldots, \theta_{N}$ from $\operatorname{Beta}(7.3,11.9)$.
2. Compute $\operatorname{Binomial}\left(2 ; 7, \theta_{i}\right)$ for each θ_{i}
3. Take the average, and compute the credibility interval as above.

- Showing each result for $N=1, \ldots, 1000$:

Bayesian inference using simulation

- Goal: Compute a probability

$$
\pi\left(y \mid y_{\mathrm{data}}\right)=\int \pi(y \mid \theta) \pi\left(\theta \mid y_{\mathrm{data}}\right) d \theta=\mathrm{E}_{\theta \mid y_{\text {data }}}[\pi(y \mid \theta)]
$$

- We can do this (also for θ with high dimension!) by

1. Generating a sample $\theta_{1}, \ldots, \theta_{N} \sim \theta \mid y_{\text {data }}$.
2. Approximating $\pi\left(y \mid y_{\text {data }}\right) \approx \sum_{i=1}^{N} \pi\left(y \mid \theta_{i}\right) / N$.

- To solve first step: Find a simulation method for densities known only up to a factor, as

$$
\pi\left(\theta \mid y_{\text {data }}\right) \propto_{\theta} \pi\left(y_{\text {data }} \mid \theta\right) \pi(\theta) .
$$

- Today, we continue with more basics on simulation.

Simulation from a uniform distribution

- Simulation from Uniform $[0,1]$ is the basis of all computer based simulation.
- What does it mean that $x_{1}, \ldots, x_{n} \sim$ Uniform[0,1] is "random"? A possible interpretation: We have no way to predict the coming numbers; the best guess for their distribution is Uniform $[0,1]$.
- The computer uses a deterministic function applied to a seed ("pseudo-random"). The seed can be set (in R with set.seed (...)) or is taken from the computer clock.
- It should be in practice impossible to apply any kind of visualiation or compute any kind of statistic which has properties other than those predicted when the sequence x_{1}, \ldots, x_{n} is iid Uniform $[0,1]$.

The inverse transform

- Let X be a random variable with cumulative distribution function $F(x)$. If $U \sim$ Uniform $[0,1]$, then $F^{-1}(U)$ has the same distribution as X.
- Proof:

$$
\operatorname{Pr}\left(F^{-1}(U) \leq \alpha\right)=\operatorname{Pr}\left(F\left(F^{-1}(U)\right) \leq F(\alpha)\right)=\operatorname{Pr}(U \leq F(\alpha))=F(\alpha)
$$

- Example: Discrete distributions.
- Example: The exponential distribution $\operatorname{Exp}(\lambda)$ has density $\pi(X)=\lambda \exp (-x \lambda)$ and cumulative distribution

$$
F(x)=1-\exp (-\lambda x)
$$

$F(x)=u$ gives $F^{-1}(u)=-\log (1-u) / \lambda$. As $1-u$ is uniform, we can simulate with

$$
-\log (u) / \lambda
$$

The inverse transform, cont.

- Example: Logistic distribution. Best defined by defining its cumulative distribution (for standard logistic distribution):

$$
F(x)=1 /(1+\exp (-x))
$$

Easy to invert. The distribution can be adjusted with changing the mean and the scale.

- Example: Cauchy distribution. Density:

$$
\pi(x)=1 /\left(\pi\left(1+x^{2}\right)\right) .
$$

The cumulative distribution is

$$
F(x)=1 / 2+1 / \pi \arctan (x)
$$

Easy to invert.

Transforming samples

- Example: One can prove that, if x_{1}, \ldots, x_{n} is a random sample from $\operatorname{Exp}(1)$ then

$$
\frac{1}{\beta} \sum_{i=1}^{n} x_{i} \sim \operatorname{Gamma}(n, \beta)
$$

- Example: One can prove that, if x_{1}, \ldots, x_{a+b} is a random sample from $\operatorname{Exp}(1)$ then

$$
\frac{\sum_{i=1}^{a} x_{i}}{\sum_{i=1}^{a+b} x_{i}} \sim \operatorname{Beta}(a, b) .
$$

- Example: One can prove that, if u_{1}, u_{2} is a random sample from Uniform[0,1$]$, then

$$
\left(\sqrt{-2 \log \left(u_{1}\right)} \cos \left(2 \pi u_{2}\right), \sqrt{-2 \log \left(u_{1}\right)} \sin \left(2 \pi u_{2}\right)\right)
$$

is a random sample from the bivariate distribution
$\operatorname{Normal}\left(\binom{0}{0},\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right)$.

Simulating from a marginal distribution

- Generally: If you have a sample $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ from a joint distribution of x and y, then $x_{1}, x_{2}, \ldots, x_{n}$ is a sample from the marginal distribution of x.
- Simple application: If $\tau \sim \operatorname{Gamma}(k / 2,1 / 2)$ and $x \mid \tau \sim \operatorname{Normal}(0,1 / \tau)$, then the marginal distribution of x is a Student t-distribution with k degrees of freedom. To simulate:
- Draw τ from Gamma(k/2,1/2).
- Then draw x from $\operatorname{Normal}(0,1 / \tau)$.

Simulating from the multivariate normal

- Recall that $x \sim \operatorname{Normal}_{k}(\mu, \Sigma)$ if

$$
\pi(x)=\frac{1}{|2 \pi \Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}(x-\mu)^{t} \Sigma^{-1}(x-\mu)\right)
$$

- NOTE: If x_{1}, \ldots, x_{k} are i.i.d $\operatorname{Normal}(0,1)$ then $x=\left(x_{1}, \ldots, x_{n}\right)^{t} \sim \operatorname{Normal}_{k}(0, I)$.
- If $x \sim \operatorname{Normal}_{k}(0, I)$ then $A x \sim \operatorname{Normal}\left(0, A A^{t}\right)$.
- THUS: To simulate from $\operatorname{Normal}(\mu, \Sigma)$:
- Simulate k independent standard normal random variables into a vector x.
- Compute the (lower triangular) Choleski decomposition S of Σ : We then have that $\Sigma=S S^{t}$.
- Compute $S x+\mu$: It is multivariate normal, and has the right expectation and covariance matrix.

Rejection sampling

- Sometimes we cannot easily simulate from a density $f(x)$, (the "target density") but we can simulate from an "instrumental" density $g(x)$ that approximates $f(x)$.
- If we can find a constant M such that $f(x) / g(x) \leq M$ for all x in the support of g and $f(x)=0$ outside this support, we can use rejection sampling to sample from f :
- Sample x from the distribution with density $g(x)$.
- Draw u uniformly on $[0,1]$.
- If $u \cdot M \cdot g(x) \leq f(x)$ accept x as a sample, otherwise reject x and start again.

Rejection sampling, cont.

- We may in fact do this with $f(x)=C \pi(x)$ where $\pi(x)$ is the actual density and C is unknown: It is still a valid method!
- When $f(x)$ integrates to 1 , the acceptance rate is $1 / M$, so we want to use a small M.
- When $f(x)$ does not integrate to 1 , the integral can be approximated as the acceptance rate multiplied by M.
- NOTE: Applicable for x of any dimension!
- Example: Random variables with picewise log-concave densities can be simulated with this method.

Transformation of random variables

- Recall from basic probability theory: If $f(x)$ is a density function, and $x=h(y)$ is a monotone transformation, then the density function for y is

$$
f(h(y))\left|h^{\prime}(y)\right|
$$

- So: If we apply the INVERSE of h on a variable with known density, we get the density of the resulting variable using the formula above.
- Example application: The non-informative prior for the precision τ of a Normal distribution is the improper distribution with "density" $\pi(\tau) \propto 1 / \tau$. We have that $\tau=h\left(\sigma^{2}\right)=1 / \sigma^{2}$. With $h(x)=1 / x$ we get that $h^{\prime}(x)=-1 / x^{2}$. Thus the corresponding non-informative prior for the variance σ^{2} of a normal distribution is given as

$$
\pi\left(\sigma^{2}\right) \propto \frac{1}{1 / \sigma^{2}}\left|-\frac{1}{\left(\sigma^{2}\right)^{2}}\right|=\frac{1}{\sigma^{2}}
$$

Transformation of multivariate random variables

- If x is a vector, if $f(x)$ is a multivariate density function, and if $x=h(y)$ is a bijective differentiable transformation, then the multivariate density function for y is

$$
f(h(y))|J(y)|
$$

where $|J(y)|$ is the determinant of the Jacobian matrix for the vector function $h(y)$.

- One application of this is in the proof of the formula used above to sample from the bivariate normal distribution.

More about priors

- Alternative 1: Informative prior based on earlier data. (Easy).
- Alternative 2: Informative prior based on "contextual knowledge":
- Simulate from the prior predictive and assess the result.
- "Prior elicitation": Get probability statements from an expert, and convert to properties of prior.
- Alternative 3: Non-informative priors:
- Examples: $\operatorname{Gamma}(\tau ; 0,0)=1 / \tau$, or $\operatorname{Beta}(\theta ; 0,0)=\frac{1}{\theta(1-\theta)}$.
- Examples: "Flat" priors like $\operatorname{Normal}(\mu ; 0, \infty)$ or $\operatorname{Beta}(1,1)$.
- MAKE SURE YOUR POSTERIOR IS PROPER!
- You may sometimes use linear combinations of priors of different types.
- Check that "reasonable" changes in your prior result in small changes in your predictions.
- ...but is there a general theory for non-informative priors?

Different parametrizations using flat priors

Assume a model can be expressed using two alternative parameters, θ and ϕ, related with $\theta=f(\phi)$.

- A prior $\pi_{\theta}(\theta)$ is transformed to the prior

$$
\pi_{\phi}(\phi)=\pi_{\theta}(f(\phi))\left|f^{\prime}(\phi)\right|
$$

- Example: If $\pi_{\theta}(\theta) \propto_{\theta} 1$ and $\theta=\log (\phi)$ with $\phi>0$ then

$$
\pi_{\phi}(\phi) \propto_{\phi} \pi_{\theta}(\log (\phi)) \frac{1}{\phi} \propto_{\phi} \frac{1}{\phi}
$$

- In general, a prior that is "flat" using one parametrization is not flat using another.
- Saying that you use a flat prior is always related to the particular parametrization you use!

Jeffreys prior

- Given a likelihood $\pi(y \mid \theta)$ the Fisher information is defined as

$$
\mathcal{I}_{\theta}(\theta)=\int\left(\frac{\partial}{\partial \theta} \log \pi(y \mid \theta)\right)^{2} \pi(y \mid \theta) d y .
$$

- One can show that, if $\theta=f(\phi)$ then

$$
\mathcal{I}_{\phi}(\phi)=\mathcal{I}_{\theta}(f(\phi))\left(f^{\prime}(\phi)\right)^{2} .
$$

- Thus, defining

$$
\pi_{\theta}(\theta) \propto_{\theta} \sqrt{\mathcal{I}_{\theta}(\theta)}
$$

gives a way to define a prior invariant of the parametrization!

- This is Jeffreys prior. It can also be defined for multivariate θ.
- Example: For the Binomial likelihood, Jeffreys prior becomes Beta(1/2, 1/2)!

