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Predictions using simulation

▶ We may want to make predictions by simulating from marginal
distributions, e.g.,

π(y) =

∫
π(y | θ)π(θ) dθ

π(y | ydata) =

∫
π(y | θ)π(θ | ydata) dθ

▶ Generate a sample (θ1, y1), . . . , (θN , yn) from the joint density!

▶ Generate the sample by first simulating θ1, . . . , θN from π(θ) (or
π(θ | ydata)) and then simulate yi from π(y | θi ) for i = 1, . . . ,N.

▶ Then y1, . . . , yN is a sample from the marginal.
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Example: Simulating from the prior predictive

We go back to the case of braking bikes. Data was (x1, y1), . . . , (x5, y5)
where xi was speed and yi was braking distance.

▶ We now use the model yi | xi , a, b, d ∼ Normal(axi + bx2i , d
2) and

we need a prior for the three parameters a, b, d .

▶ For simplicity we try out

a ∼ Uniform[A0,A1] b ∼ Uniform[B0,B1] d ∼ Uniform[D0,D1]

for different values A0,A1,B0,B1,D0,D1, and simulate from the
prior predictive to see if we get something reasonable.

▶ Values (0.1, 0.3, 0, 0.005, 0.5, 2) produce
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Predictions using simulation in a different way

▶ Sometimes we want to compute probabilities π(y) for specific values
of y . We can use

π(y) =

∫
π(y | θ)π(θ) dθ = Eθ [π(y | θ)]

π(y | ydata) =

∫
π(y | θ)π(θ | ydata) dθ = Eθ|ydata [π(y | θ)]

▶ Idea: Approximate the expectation by generating a sample θ1, . . . , θN
from the relevant distribution and average over this sample.

▶ NOTE: This way to approximate the integral does not suffer from
the curse of dimensionality!
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Monte Carlo Integration

Assume θ1, θ2, . . . , θN is a random sample from π(θ | y).
▶ Pr(θ > z) ≈ # θi ’s above z

N .

▶ We can rewrite this in a fancy way as

Eθ|y (I (θ > z)) =

∫
I (θ > z)π(θ | y) dθ ≈ 1

N

N∑
i=1

I (θi > z).

▶ More generally (assuming the expectation exists)

Eθ|y (f (θ)) =

∫
f (θ)π(θ | y) dθ ≈ 1

N

N∑
i=1

f (θi ).

▶ Formally, according to the Strong Law of large numbers,

Pr

(
lim

N→∞

1

N

N∑
i=1

f (θi ) = E(f (θ))

)
= 1

where the expectation is taken over a distribution from which
θ1, . . . , θN is a random sample.
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Toy example: The Binomial

We want to predict the probability of 2 successes in 7 trials, with
probability of success θ, when θ ∼ Beta(7.3, 11.9).

▶ For example, Beta(7.3, 11.9) could be the posterior after having
observed some earlier data.

▶ Using conjugacy, we can compute

Beta-Binomial(2; 7, 7.3, 11.9) =

(
7

2

)
B(2 + 7.3, 5 + 11.9)

B(7.3, 11.9)
= 0.2490633

▶ Using simulation (N = 10000) we get (for example) 0.254

▶ Using Monte Carlo integration (N = 10000) we get (for example)
0.2504272
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Small example: properties of the posterior

If θ = (α, β, γ) is the parameter vector, how do you find the posterior
probability that α > β2 using Monte Carlo integration?

▶ We generate a set of vectors θ1, . . . , θN from the posterior for θ
given ydata.

▶ Approximate

Pr
(
α > β2 | ydata

)
≈ 1

N

N∑
i=1

I (αi > β2
i )

where θi = (αi , βi , γi ) .
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Example: Approximating quantiles

▶ Recall: A 95% credibility interval for a random variable θ is an
interval so that the probability that θ is in the interval is 95%.

▶ A possible credibility interval for θ will be [z0, z1] where

Pr[θ < z0] = 0.025 and Pr[θ ≤ z1] = 0.975.

▶ Approximate z0 and z1 as follows:

1. Simulate a sample θ1, θ2, . . . , θN .
2. Order it by size to find the 2.5th and 97.5th empirical quantiles.

▶ In R, use quantile(theta, c(0.025, 0.975)).
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Accuracy of Monte Carlo integration

▶ Assume θ1, θ2, . . . , θN is a random sample from π(θ | y). The
Central Limit Theorem (CLT) states that, approximately for large N,

1

N

N∑
i=1

f (θi ) ∼ Normal

(
Eθ|y (f (θ)),

Varθ|y (f (θ))

N

)
as long as the first two moments of f (θ) exist.

▶ Transferring to a Bayesian setting (and using a flat prior) we get
that, after sampling θ1, . . . , θN , an approximate 95% credibility
interval for Eθ|y (f (θ)) is

1

N

N∑
i=1

f (θi )± 1.96
1√
N

√
Varθ|y (f (θ)).

▶ If we write f (θ) =
∑N

i=1 f (θi )/N we may approximate

Varθ|y (f (θ)) ≈ s2 =
1

N − 1

N∑
i=1

(
f (θi )− f (θ)

)2
.

9 / 24



Example: Returning to Binomial example

We want to predict the probability of 2 successes in 7 trials, with
probability of success θ, when θ ∼ Beta(7.3, 11.9).
▶ Find this using Monte carlo integration as follows:

1. Simulate θ1, . . . , θN from Beta(7.3, 11.9).
2. Compute Binomial(2; 7, θi ) for each θi
3. Take the average, and compute the credibility interval as above.

▶ Showing each result for N = 1, . . . , 1000:
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Bayesian inference using simulation

▶ Goal: Compute a probability

π(y | ydata) =
∫

π(y | θ)π(θ | ydata) dθ = Eθ|ydata [π(y | θ)]

▶ We can do this (also for θ with high dimension!) by

1. Generating a sample θ1, . . . , θN ∼ θ | ydata.
2. Approximating π(y | ydata) ≈

∑N
i=1 π(y | θi )/N.

▶ To solve first step: Find a simulation method for densities known
only up to a factor, as

π(θ | ydata) ∝θ π(ydata | θ)π(θ).

▶ Today, we continue with more basics on simulation.
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Simulation from a uniform distribution

▶ Simulation from Uniform[0, 1] is the basis of all computer based
simulation.

▶ What does it mean that x1, . . . , xn ∼ Uniform[0, 1] is ”random”? A
possible interpretation: We have no way to predict the coming
numbers; the best guess for their distribution is Uniform[0, 1].

▶ The computer uses a deterministic function applied to a seed
(”pseudo-random”). The seed can be set (in R with
set.seed(...)) or is taken from the computer clock.

▶ It should be in practice impossible to apply any kind of visualiation
or compute any kind of statistic which has properties other than
those predicted when the sequence x1, . . . , xn is iid Uniform[0, 1].
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The inverse transform

▶ Let X be a random variable with cumulative distribution function
F (x). If U ∼ Uniform[0, 1], then F−1(U) has the same distribution
as X .

▶ Proof:

Pr(F−1(U) ≤ α) = Pr(F (F−1(U)) ≤ F (α)) = Pr(U ≤ F (α)) = F (α)

▶ Example: Discrete distributions.

▶ Example: The exponential distribution Exp(λ) has density
π(X ) = λ exp(−xλ) and cumulative distribution

F (x) = 1− exp(−λx)

F (x) = u gives F−1(u) = − log(1− u)/λ. As 1− u is uniform, we
can simulate with

−log(u)/λ
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The inverse transform, cont.

▶ Example: Logistic distribution. Best defined by defining its
cumulative distribution (for standard logistic distribution):

F (x) = 1/(1 + exp(−x))

Easy to invert. The distribution can be adjusted with changing the
mean and the scale.

▶ Example: Cauchy distribution. Density:

π(x) = 1/(π(1 + x2)).

The cumulative distribution is

F (x) = 1/2 + 1/π arctan(x)

Easy to invert.
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Transforming samples

▶ Example: One can prove that, if x1, . . . , xn is a random sample from
Exp(1) then

1

β

n∑
i=1

xi ∼ Gamma(n, β)

▶ Example: One can prove that, if x1, . . . , xa+b is a random sample
from Exp(1) then ∑a

i=1 xi∑a+b
i=1 xi

∼ Beta(a, b).

▶ Example: One can prove that, if u1, u2 is a random sample from
Uniform[0, 1], then(√

−2 log(u1) cos(2πu2),
√

−2 log(u1) sin(2πu2)
)

is a random sample from the bivariate distribution

Normal

((
0
0

)
,

(
1 0
0 1

))
.
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Simulating from a marginal distribution

▶ Generally: If you have a sample (x1, y1), (x2, y2), . . . , (xn, yn) from a
joint distribution of x and y , then x1, x2, . . . , xn is a sample from the
marginal distribution of x .

▶ Simple application: If τ ∼ Gamma(k/2, 1/2) and
x | τ ∼ Normal(0, 1/τ), then the marginal distribution of x is a
Student t-distribution with k degrees of freedom. To simulate:
▶ Draw τ from Gamma(k/2, 1/2).
▶ Then draw x from Normal(0, 1/τ).
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Simulating from the multivariate normal

▶ Recall that x ∼ Normalk(µ,Σ) if

π(x) =
1

|2πΣ|1/2
exp

(
−1

2
(x − µ)tΣ−1(x − µ)

)
▶ NOTE: If x1, . . . , xk are i.i.d Normal(0, 1) then

x = (x1, . . . , xn)
t ∼ Normalk(0, I ).

▶ If x ∼ Normalk(0, I ) then Ax ∼ Normal(0,AAt).

▶ THUS: To simulate from Normal(µ,Σ):
▶ Simulate k independent standard normal random variables into a

vector x .
▶ Compute the (lower triangular) Choleski decomposition S of Σ: We

then have that Σ = SS t .
▶ Compute Sx + µ: It is multivariate normal, and has the right

expectation and covariance matrix.
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Rejection sampling

▶ Sometimes we cannot easily simulate from a density f (x), (the
”target density”) but we can simulate from an ”instrumental”
density g(x) that approximates f (x).

▶ If we can find a constant M such that f (x)/g(x) ≤ M for all x in
the support of g and f (x) = 0 outside this support, we can use
rejection sampling to sample from f :
▶ Sample x from the distribution with density g(x).
▶ Draw u uniformly on [0, 1].
▶ If u ·M · g(x) ≤ f (x) accept x as a sample, otherwise reject x and

start again.
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Rejection sampling, cont.

▶ We may in fact do this with f (x) = Cπ(x) where π(x) is the actual
density and C is unknown: It is still a valid method!

▶ When f (x) integrates to 1, the acceptance rate is 1/M, so we want
to use a small M.

▶ When f (x) does not integrate to 1, the integral can be
approximated as the acceptance rate multiplied by M.

▶ NOTE: Applicable for x of any dimension!

▶ Example: Random variables with picewise log-concave densities can
be simulated with this method.
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Transformation of random variables

▶ Recall from basic probability theory: If f (x) is a density function,
and x = h(y) is a monotone transformation, then the density
function for y is

f (h(y))|h′(y)|
▶ So: If we apply the INVERSE of h on a variable with known density,

we get the density of the resulting variable using the formula above.

▶ Example application: The non-informative prior for the precision τ
of a Normal distribution is the improper distribution with ”density”
π(τ) ∝ 1/τ . We have that τ = h(σ2) = 1/σ2. With h(x) = 1/x we
get that h′(x) = −1/x2. Thus the corresponding non-informative
prior for the variance σ2 of a normal distribution is given as

π(σ2) ∝ 1

1/σ2

∣∣∣∣− 1

(σ2)2

∣∣∣∣ = 1

σ2
.
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Transformation of multivariate random variables

▶ If x is a vector, if f (x) is a multivariate density function, and if
x = h(y) is a bijective differentiable transformation, then the
multivariate density function for y is

f (h(y))|J(y)|

where |J(y)| is the determinant of the Jacobian matrix for the vector
function h(y).

▶ One application of this is in the proof of the formula used above to
sample from the bivariate normal distribution.
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More about priors

▶ Alternative 1: Informative prior based on earlier data. (Easy).

▶ Alternative 2: Informative prior based on ”contextual knowledge”:
▶ Simulate from the prior predictive and assess the result.
▶ ”Prior elicitation”: Get probability statements from an expert, and

convert to properties of prior.

▶ Alternative 3: Non-informative priors:
▶ Examples: Gamma(τ ; 0, 0) = 1/τ , or Beta(θ; 0, 0) = 1

θ(1−θ)
.

▶ Examples: ”Flat” priors like Normal(µ; 0,∞) or Beta(1, 1).
▶ MAKE SURE YOUR POSTERIOR IS PROPER!

▶ You may sometimes use linear combinations of priors of different
types.

▶ Check that ”reasonable” changes in your prior result in small
changes in your predictions.

▶ ...but is there a general theory for non-informative priors?
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Different parametrizations using flat priors

Assume a model can be expressed using two alternative parameters, θ
and ϕ, related with θ = f (ϕ).

▶ A prior πθ(θ) is transformed to the prior

πϕ(ϕ) = πθ(f (ϕ))|f ′(ϕ)|

▶ Example: If πθ(θ) ∝θ 1 and θ = log(ϕ) with ϕ > 0 then

πϕ(ϕ) ∝ϕ πθ(log(ϕ))
1

ϕ
∝ϕ

1

ϕ
.

▶ In general, a prior that is ”flat” using one parametrization is not flat
using another.

▶ Saying that you use a flat prior is always related to the particular
parametrization you use!
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Jeffreys prior

▶ Given a likelihood π(y | θ) the Fisher information is defined as

Iθ(θ) =
∫ (

∂

∂θ
log π(y | θ)

)2

π(y | θ) dy .

▶ One can show that, if θ = f (ϕ) then

Iϕ(ϕ) = Iθ(f (ϕ)) (f ′(ϕ))
2
.

▶ Thus, defining
πθ(θ) ∝θ

√
Iθ(θ)

gives a way to define a prior invariant of the parametrization!

▶ This is Jeffreys prior. It can also be defined for multivariate θ.

▶ Example: For the Binomial likelihood, Jeffreys prior becomes
Beta(1/2, 1/2)!
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