
MSA101/MVE187 2021 Lecture 5
More basic simulation methods

Introduction to Markov chain Monte Carlo
(MCMC) methods

Petter Mostad

Chalmers University

September 12, 2022

1 / 20

Review and overview

▶ Prediction variable ypred, data ydata, parameter θ.

▶ Make predictions using

π(ypred | ydata) =
∫

π(ypred | θ)π(θ | ydata) dθ

▶ One possibility: Generate sample from posterior π(θ | ydata) and use
Monte Carlo integration.

▶ Today:
▶ Importance sampling: A better sample for the Monte Carlo

integration.
▶ Sampling Importance Resampling: More efficient sampling.
▶ Approximating a function (the posterior?) using Laplace

approximation.
▶ Main feature: Introduction to (review of?) Markov chains and the

Metropolis Hastings algorithm: Generating a sample from the
posterior.

2 / 20

Importance sampling

▶ Review: Monte Carlo integration approximates

Ef (h(x)) =

∫
h(x)f (x) dx

where f (x) is a probability density function by simulating x1, . . . , xm
according to f and taking the average of h(x1), . . . , h(xm). The
result has accuracy

√
Varf (h(X))/m.

▶ Instead, we may re-write the integral as∫ [
h(x)f (x)

g(x)

]
g(x) dx

and simulate xi according to g , taking the averages of
h(x1)f (x1)/g(x1), . . . , h(xm)f (xm)/g(xm).

▶ A good idea if Varg (h(X)f (X)/g(X)) is much smaller than
Varf (h(X)).

3 / 20

Importance sampling: Example

−2 0 2 4 6

0
.0

0
.6
x

▶ In figure above, the black curve is h(x) and the red curve is the
density f (x). The dotted curve is a scaled version of their product.

▶ Simulating points according to the red curve to compute the integral
under the dotted curve will not be efficient.

▶ Better to simulate using the blue curve, which approximates the
dotted curve, and then adjust using the quotient of the densities, as
shown in the previous overhead.

4 / 20

Sampling Importance Resampling (SIR)

−2 0 2 4 6

0
.0

0
.6

x

▶ In the figure above, assume you want to sample from a density
proportional to the dotted curve: π(x) ∝x v(x).

▶ An approximate procedure starts with generating a sample

x1, x2, . . . , xN

according to the density given by the blue curve g(x).
▶ Then one resamples from this sample (with replacement) using

probability weights

wi =
v(xi)/g(xi)∑N
j=1 v(xj)/g(xj)

.

5 / 20

The Laplace approximation

▶ For many simple models, the posterior π(θ | data) for the parameter
will have a shape that is close to a normal distribution.

▶ NOTE: For “scale parameters” (e.g., a standard deviation σ or a
precision τ) reparametrization with a logarithm (e.g., θ1 = log(σ)
and θ2 = log(τ)) with often make the posterior more normal-like.

▶ So, sometimes using some (multivariate) normal approximation for
the true posterior distribution is a good enough approximation.

▶ If we use the normal density that has the same mode as the actual
posterior and the same second derivatives of its logged density as
that of the actual logged posterior, we call it the Laplace
approximation.

▶ The Laplace approximation can be found for example by numerical
differentiation of the logged posterior density, which needs to be
known only up to an additive constant. See the R function laplace

in the R package LearnBayes.

6 / 20

The (multivariate) Laplace as a Taylor approximation

Assume we have a density written

π(θ) = C · exp(h(θ))

for some known function h and unknown constant C . If θ̂ is the mode of
the density, the second-degree Taylor approximation gives

h(θ) ≈ h(θ̂) +
1

2
(θ − θ̂)tH(θ̂)(θ − θ̂)

where H(θ) is the Hessian matrix of second derivatives. We get

π(θ) ≈ C · exp(h(θ̂)) exp
(
−1

2
(θ − θ̂)t((−H(θ̂))−1)−1(θ − θ̂)

)
.

This means that π(θ) might be approximated by a multivariate normal
distribution with expectation θ̂ and covariance matrix −H(θ̂)−1. If we
integrate both sides with respect to θ we get

C ≈ 1

exp(h(θ̂))|2π(−H(θ̂))−1|1/2
.

7 / 20

Example: Importance sampling using a multivariate normal
approximation

The output from a machine depends on a vector θ = (θ1, . . . , θ5) of
external parameters as follows:

f (θ) = exp(−10((θ1 − 3)2 + θ22 + θ23 + θ24 + θ25))

θ varies over time. What is the expected output?

▶ A data analysis has produced a posterior. For simplicity we assume
θ | data ∼ Normal5(0, I).

▶ Computing the expectation directly by simulation can give large
errors.

▶ Instead, find a Laplace approximation to the function you want to
integrate and use this as an instrumental density in importance
sampling. Faster convergence towards accuracy!

8 / 20

Why do we still need more simulation methods?

▶ Given a density function known up to a proportionality constant, we
have looked at Rejection sampling, SIR, and importance sampling to
generate (and use) samples.

▶ However, to give good accuracy, these methods require an
approximate instrumental density g(θ).

▶ We now introduce Markov chain Monte Carlo (MCMC) which can
much more easily and generally give accurate results.

▶ To study it we first need to review(?) a bit about Markov chains.

9 / 20

Review(?) of Markov chains

▶ Definition: A (discrete time, time-homogeneous) Markov chain with
kernel K is a sequence of random variables X (0),X (1),X (2), . . .
satisfying, for all t,

π(X (t) | X (0),X (1), . . . ,X (t−1)) = π(X (t) | X (t−1)) = K (X (t−1),X (t))

▶ Example: In the case of a state space with n possible values, a
distribution is represented by a vector of length n summing to 1, and
the transition probabilities are given in an (n × n) matrix K .

▶ A limiting distribution is the probability distribution (if it exists)
limt→∞ X (t).

▶ A stationary distribution f is one satisfying

f (y) =

∫
K (x , y)f (x) dx .

In the discrete case, a stationary distribution becomes a probability
vector v so that vK = v , i.e., a left eigenvector for K .

10 / 20

Ergodic Markov chains

▶ For Markov chains with discrete state spaces we have:
▶ A Markov chain is irreducible if for any pairs of states x and y there

is an n so that the probability that the chain moves from x to y in n
steps is nonzero.

▶ If a chain starts at x the (random) number of steps T before it
revisits x is called the return time. A state is called positive recurrent
if the expectation of T is finite.

▶ The period of a state x is the greatest common divisor of the
numbers m so that Pr(T = m) > 0. In an irreducible chain all states
have the same period. If this period is 1 the chain is called aperiodic.

▶ A Markov chain is called ergodic if it is irreducible, aperiodic, and all
states have a finite expected return time.

▶ For Markov chains with continuous state spaces, ergodicity is based
on similar definitions.

11 / 20

Fundamental limit theorem for ergodic Markov chains

▶ If X0,X1,X2, . . . is an ergodic Markov chain then there exists a
unique positive stationary distribution which is the limiting
distribution for the chain.

▶ In other words, if we run an ergodic Markov chain long enough, its
values will eventually be an approximate sample from the limiting
distribution, which can be identified as the unique distribution that
is stationary for the chain.

12 / 20

How to use this for MCMC

▶ The MCMC algorithm constructs a Markov chain which has a
stationary distribution equal to the target density we would like to
generate a sample from.

▶ To use MCMC one needs to check that the constructed Markov
chain is ergodic, but this is usually simple.

▶ Running the Markov chain will then eventually create values which
are an approximate sample from the target distribution.

▶ Will this approximate sample give an approximately correct
computation for the prediction?

13 / 20

The Ergodic theorem

▶ This theorem says that, when X (0), . . . ,X (t), . . . , is sampled from an
ergodic Markov chain with stationary distribution f , we have that

lim
T→∞

1

T

T∑
t=1

h(X (t)) = Ef [h(X)]

▶ When the sample is instead a random sample from f , this is the law
of large numbers; we then also have the extension to the Central
Limit Theorem, telling us how fast the convergence is.

▶ In the ergodic case, we still have convergence, but we don’t know as
easily how fast it is.

14 / 20

MCMC simulation: General idea

▶ We have a “target density” f (x) (known only up to a proportionality
constant) and we would like to generate a sample (or approximate
sample) from this density.

▶ We use the Metropolis-Hastings algorithm to construct a Markov
chain x0, x1, . . . which has the target density as a stationary
distribution.

▶ After checking that the chain is ergodic, we know that if we simulate
long enough, the chain will provide an approximate sample which
can be used for Bayesian inference and predictions with Monte Carlo
integration.

15 / 20

The Metropolis-Hastings algorithm

Given a probability density f that we want to simulate from. Construct a
proposal function q(y | x) which for every x gives a probability density
for a proposed new value y . The algorithm starts with a choice of an
initial value x (0) for x , and then simulates x (t+1) given x (t) for t ≥ 0.
Specifically, given x (t),

▶ Simulate a new value y according to q(y | x (t)).
▶ Compute the acceptance probability

ρ(x (t), y) = min

(
f (y)q(x (t) | y)
f (x (t))q(y | x (t))

, 1

)
.

▶ Set

x (t+1) =

{
y with probability ρ(x (t), y)
x (t) with probability 1− ρ(x (t), y)

16 / 20

Proving that the Metropolis-Hastings algorithm works

▶ The missing ingredient is to prove that the Metropolis-Hastings
(MH) algorithm has the target density as a stationary distribution.

▶ We do this by showing
▶ The MH chain satisfies the detailed balance condition relative to the

target density.
▶ If a chain satisfies the detailed balance condition relative to a density

f then f is a stationary distribution.

17 / 20

The detailed balance condition

▶ A Markov chain satisfies the detailed balance condition relative to a
density f if, for all x , y ,

f (x)K (x , y) = f (y)K (y , x)

where K (x , y) is the kernel of the Markov chain. The chain is then
called a time reversible Markov chain.

▶ If a chain satisfies detailed balance relative to f , then f must be a
stationary distribution.

▶ Proof by integrating over x :∫
K (x , y)f (x) dx =

∫
K (y , x)f (y) dx = f (y).

18 / 20

The chain defined by Metropolis-Hastings satisfies the
detailed balance condition relative to f (x)

▶ Assume first that ρ(x , y) < 1 (with x ̸= y). Then

f (x)K (x , y) = f (x)q(y | x)ρ(x , y) = f (x)q(y | x) f (y)q(x | y)
f (x)q(y | x)

= f (y)q(x | y) = f (y)q(x | y)ρ(y , x) = f (y)K (y , x)

The next to last step is because ρ(y , x) = 1 when ρ(x , y) < 1.

▶ If we start with ρ(x , y) = 1 the situation is clearly symmetrical, and
we get the same result.

19 / 20

Note that...

▶ ...the Metropolis-Hastings algorithm only requires knowledge of the
target density f (x) up to a constant not involving x , as the density
only appears in the quotient f (y)/f (x) in the algoritm.

▶ ...the Metropolis-Hastings algorithm only requires knowledge of the
proposal density up to a constant, for the same reason.

▶ ...similarly, smart versions of the Metropolis-Hastings algorithm uses
proposal flunctions so that many factors in the acceptance
probability

f (y)q(x | y)
f (x)q(y | x)

cancel each other.

20 / 20

