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Review: The Metropolis-Hastings algorithm

Given a probability density f that we want to simulate from. Construct a
proposal function g(y | x) which for every x gives a probability density
for a proposed new value y. The algorithm starts with a choice of an
initial value x(© for x, and then simulates each x(!) based on x(t—1).
Specifically, given x(1),

» Simulate a new value y according to q(y | x(9)).

» Compute the acceptance probability

¢ - F()a(x9 [ y)
o) =min (L5 T )

> Set

L(e+1) _ [y with probability p(x®),y)
L x®  with probability 1 — p(x(®), y)
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Review / overview

» Last time: Large freedom in choice of proposal function.
» Todays main subjects:
» Outputs to study and check convergence
Example: Heart transplants
Gibbs sampling
Slice sampling
Hierarchical models
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Outputs to study convergence

As we generally cannot estimate the degree of convergence, we need to
at least make sure we detect clear signs of non-convergence. For example
by

» using trace plots.

» checking acceptance rates.

> varying the starting point x(®).
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Checking convergence

» An attempt on a systematic test for convergence is based on the
following:

> Start k independent chains at k independent starting points.

» Generate the Markov chains in parallell.

» |If the chains have converged, the variance between the chains should
correspond to the variance within the chains.

» Formal tests have been developed using this idea.

> An (old, but useful) R package directed towards analyzing
convergence from MCMC output: coda.
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Burn-in

> Values in the last part of the generated Markov chain will be closer
in distribution to the target distribution than those in the first part.

» To improve the accuracy of the Monte Carlo integration, we throw
away the first part, the “burn-in".

» The size of the burn-in can be detected from plots, or from
experience in similar simulations.
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» The Markov chain sequence is a dependent sequence, not a random
sample (even if, in the limit, each single value has a distribution
close to the target distribution).

» The amount of autocorrelation can be studied in plots, e.g. with the
R function acf.

» The amount of autocorrelation can then be reduced by using, e.g.,
only each 10th or 50th value in the chain.

» Only a good idea if you need an approximate random sample. For
Monte Carlo integration, do not do thinning.
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Heart transplant example from Albert (chapter 7)

> For 94 hospitals that do heart transplant surgery, learn about the
mortality rate A; at hospital i, i =1,...,94.

» A possible question: At a new exposure e, what is the chance of
dying at hospital i?

» Another possible question: The probability that \; < A; for hospitals
i, §.

» Model: y; | Aj ~ Poisson(e;\;), but how to model Ag, ..., Aga?

» Three possibilities:

> Equal: A =X =--- = Aos drawn from a prior we specify.
» Independent: Ai,..., Aoa drawn indepedently from a prior we specify.
> Ai,..., Ao drawn from a joint distribution: We learn about that

distribution from datal

» In terms of estimates of Poisson rates, we will get below

294 Yj 0% B% 294 Yj Y
i=1Yi 1 94 i=1Yj i
= or =, ..., = or w—=gr—+(1-w =
16 € €o4 16 €i
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Assuming equal rates

» If we use the prior (A) &< 1/\ and data from hospital 1 we get

7\ | y1) ocx m(yr | A)m(N) o Poisson(yr; eiA)/ A ocy e WL
oy Gamma(A;y1, 1)

» The posterior after considering all data becomes

94 94
Gamma Zy,-, Z ei | = Gamma(277,294681) = Gamma(S,, Se).
Jj=1 Jh

> Note that the expected value becomes S, /S..
» Computing with the Poisson-Gamma conjugacy, we get that the

predictive distribution at new exposure e is
Poisson(y; Ae) Gamma(; Sy, Se)
Gamma(A; Sy + h, Sc + e)

m(y) =

= Negative-Binomial (y; Sy, S Sj_ e) .
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Assuming rates are independent

» |If we use the improper prior w(A;) <y, 1/A;, then the posterior
becomes improper for the hospitals where no deaths have occurred
(vi = 0). Problem!

» For other hospitals we get A; | data ~ Gamma(y;, &;), with
expectation y;/e;.

» We can use a proper prior, but where should the information come
from to make this prior?

» Most reasonable to pool the information form different hospitals, but
acknowledge that the \; may be different.
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Using a hierarchical model

> We assume the \; are sampled from some distribution, AND we try
to learn the parameters of this distribution from the datal

» We use the model
¥i | Ai ~ Poisson()\;e;) and \; ~ Gamma (a, Z) ,
1 1
2 and -
7(a) x o an (1) oxu .

» Note: With this parametrization, the expectation of the Gamma
distribution is y and its standard deviation is 11/+/cv, so this
parametrization can be easily interpreted.

» We now have a fully specified Bayesian model with 96 parameters
Jzyes /\1, )\2, ceey )\94.

» The posterior distribution on « will tell us to what extent the \; are
similar.
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Computations for the hierarchical model

» The model above has 94 + 2 unobserved variables. For more easy
computation, note that the distribution of y;1,..., yo4, a, and p is
equivalent in the following marginalized model:

. . a/p 1 1

i ~ Neg-Binomial | &, ———— | , 7m(a) o — and 7 X, —

yi ~ Neg (o) rlo) o o (o)

> As we now only have 2 unknown variables, we can do inference for
and « for example with discretization or MCMC.

» If we then want the posterior density for some particular A;, note
that

Aj | @, 1, data ~ Gamma <a + Y, @ + ej) .
i

> Computations (in R) can now answer questions such as
» What is the probability of no deaths in hospital 24 given a new
exposure of 10007
> What is the probability that hospital 90 is really better than hospital
9, i.e., that \gp < Ao?
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Computations for the hierarchical model

» For the posterior 7(a, p | data)

94
1
m(a, 1 | data) xq,, on H Neg-Binomial (y;; a,~ flue')
i=1 !

a2 19_4[ My +a) a N\ ( pe \”
o M) a+ e a+ue)

i=1

» To make the posterior more symmetrical, improve numerical
properties, and avoid problems that « and p can only have positive
values, we do the reparametrization 6, = log(«) and 6, = log(u),
e, a=e% and = e.
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Switching between several proposal functions

» We presented the Metropolis Hastings algorithm as using only one
proposal density.
> Actually
P> you may use a whole menu of propsal functions, and
» you may switch between them in a systematic or random way,
as long as the resulting Markov chain in the end becomes ergodic.
» For some “difficult” posterior densities, you might usually use a
small-step random walk, but occasionally use a large-step proposal,
tailored to jump between separate “islands” of high posterior density.
» A very popular possibility: Using proposal densities that fix all but
one (or all but some) of the variables.
» You need to cycle through different proposal functions so that all
variables have a chance to be updated.
» When computing the acceptance probability

‘ - (f)a(x) | y)
o091 =i (e 0y )

usually many factors cancel, so there are computational advantages.

» In Albert, this is called “Metropolis within Gibbs".
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Gibbs sampling

» If (x1,X2,...,Xs) is the variable vector, imagine that you cycle
through proposal functions j = 1,..., n, where proposal j only
changes Xx;, leaving all other variables unchanged.

> Assume in fact proposal j simulates a new proposed value x;* from

T(Xj | X5 ooy Xjm1s Xjt1s - - - 5 Xn),
the conditional distribution of x; given all the other variables.
» The acceptance probability in the MH algorithm is computed with
m(x")q(x | x*)
m(x)q(x* | x)

- 7r(x1,...,xj",...,x,,)7r(xj | X1,y Xjm1, Xjt1s - - - 3 Xn)
N 71'()(1,...,xj,...,,x,,)ﬂ'(xjfk | X015 ooy Xjm1, Xjt1s - - - 3 Xn)
_ 7r(x1,...7)g,1,>g+1,...,x,,):1

(X1 ooy Xjm1s Xjg1s -« - 5 Xn)

So accept always!
» This algorithm is called Gibbs sampling.
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Gibbs sampling: Small examples

» Example: Simulate from a bivariate normal distribution. The
conditional distributions are normal, formulas are given in a previous
lecture.

» Example: Data y1,ys, ..., y, are from a Normal(u, 7~1) distribution,
with independent priors i ~ Normal(0,1) and 7 ~ Gamma(3, 4).

» When 7 is fixed we get

nyr 1
data ~ N I .
u | T,data orma (nT—|—1’nT—|—1>

> When p is fixed we get
T | u,data ~ Gamma 340 4-1-}2”:( —pn)?
H, 2’ 2 2 Yi—un .

» When 7 is fixed, the formula above is a result of the formula for the
posterior in the Normal-Normal conjugacy with fixed precision.

» When p is fixed, the formula above is a result of the formula for the
posterior in the Normal-Gamma conjugacy with fixed expectation.
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Gibbs sampling: Summary

» For many models it is easy to implement and program.

» In particular, in hierarchical models Gibbs sampling is sometimes
quite easy to find the formulas for (i.e., the conditional densities to
simulate from).

» No need to bother with acceptance probabilities!

» However, the convergence may be too slow for practical use if

> the variables are highly correlated in the posterior, or
P separate regions of high posterior density cannot easily be reached by
changing one variable at a time.

» You may use blocked Gibbs sampling: Updating a subset of the
variables sampling from their conditional distribution given the
remaining variables.
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Hierarchiclal models

» Sometimes, observed data have dependencies that can best be
described using a hierarchy.

» The heart transplant data is an example.

» Example: Test results for students may depend on the class they are
in, the school they attend, and the country they live in.

» A statistical model for the data should then contain a random
variable for each “source of influence”; they would depend on each
other in a hierarchy, which can be drawn as an upside-down tree, or
more generally as a network.

» When making computations, the tree structure can be very useful,
for example to find conditional distributions for Gibbs sampling.
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A hierarchical example

Data xq,...,xg and yi,..., ¥ are organized into groups, and we want to
predict a value z; in a third group. We assume a model

X1,...,xg ~ Normal(y,m; =
YisooYe ™ Normal(u 1)
21~ Normal(us, %)

(

p1, 2, i3~  Normal(10,751)
70 ~ Gamma(1l,4)
)

71~ Gamma(7,3

» We can make predictions for z; given data xq,...,xg and y1,..., ¥
by simulating with Gibbs sampling from the model where the data is
fixed and the remaining variables p1, 112, pt3, 70, 71, z1 are simulated.

» Note: The exact form for the conditional distributions of each of
these variables can be found using conjugacy.
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Conditional distributions for the example

The conditional distributions become (prove yourself!)

1079 + 8Xx7y 1
T0o+8m 710+ 87

1079 + 6y 1 >

M1 |X1,...,Xg,7'1,7’0 ~ Normal(

To+6m1 ‘To+67
1079 + z11 1 >
To+7n T+

p2 | Y1, Y6, 1,70~ (
us | z1,7,70 ~ Normal <

70 | p1, 2, 3~ Gamma

e m)
5 8
T | pas 2, 3, X1 - X, Y1 -+ Y6, 21~  Gamma <7+2 E )?
4% D i—m)+ %(21 - u3)2>

7 | p3, 11~ Normal(u;,,Tl_l)
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