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Review: The Metropolis-Hastings algorithm

Given a probability density f that we want to simulate from. Construct a
proposal function q(y | x) which for every x gives a probability density
for a proposed new value y . The algorithm starts with a choice of an
initial value x (0) for x , and then simulates each x (t) based on x (t−1).
Specifically, given x (t),

▶ Simulate a new value y according to q(y | x (t)).
▶ Compute the acceptance probability

ρ(x (t), y) = min

(
f (y)q(x (t) | y)
f (x (t))q(y | x (t))

, 1

)
.

▶ Set

x (t+1) =

{
y with probability ρ(x (t), y)
x (t) with probability 1− ρ(x (t), y)
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Review / overview

▶ Last time: Large freedom in choice of proposal function.

▶ Todays main subjects:
▶ Outputs to study and check convergence
▶ Example: Heart transplants
▶ Gibbs sampling
▶ Slice sampling
▶ Hierarchical models
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Outputs to study convergence

As we generally cannot estimate the degree of convergence, we need to
at least make sure we detect clear signs of non-convergence. For example
by

▶ using trace plots.

▶ checking acceptance rates.

▶ varying the starting point x (0).
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Checking convergence

▶ An attempt on a systematic test for convergence is based on the
following:
▶ Start k independent chains at k independent starting points.
▶ Generate the Markov chains in parallell.
▶ If the chains have converged, the variance between the chains should

correspond to the variance within the chains.

▶ Formal tests have been developed using this idea.

▶ An (old, but useful) R package directed towards analyzing
convergence from MCMC output: coda.

5 / 20



Burn-in

▶ Values in the last part of the generated Markov chain will be closer
in distribution to the target distribution than those in the first part.

▶ To improve the accuracy of the Monte Carlo integration, we throw
away the first part, the “burn-in”.

▶ The size of the burn-in can be detected from plots, or from
experience in similar simulations.
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Thinning

▶ The Markov chain sequence is a dependent sequence, not a random
sample (even if, in the limit, each single value has a distribution
close to the target distribution).

▶ The amount of autocorrelation can be studied in plots, e.g. with the
R function acf.

▶ The amount of autocorrelation can then be reduced by using, e.g.,
only each 10th or 50th value in the chain.

▶ Only a good idea if you need an approximate random sample. For
Monte Carlo integration, do not do thinning.

7 / 20



Heart transplant example from Albert (chapter 7)

▶ For 94 hospitals that do heart transplant surgery, learn about the
mortality rate λi at hospital i , i = 1, . . . , 94.

▶ A possible question: At a new exposure e, what is the chance of
dying at hospital i?

▶ Another possible question: The probability that λi < λj for hospitals
i , j .

▶ Model: yi | λi ∼ Poisson(eiλi ), but how to model λ1, . . . , λ94?

▶ Three possibilities:
▶ Equal: λ = λ1 = · · · = λ94 drawn from a prior we specify.
▶ Independent: λ1, . . . , λ94 drawn indepedently from a prior we specify.
▶ λ1, . . . , λ94 drawn from a joint distribution: We learn about that

distribution from data!

▶ In terms of estimates of Poisson rates, we will get below∑94
j=1 yj∑94
j=1 ej

or
y1
e1
, . . . ,

y94
e94

or w

∑94
j=1 yj∑94
j=1 ej

+(1−w)
yi
ei
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Assuming equal rates

▶ If we use the prior π(λ) ∝ 1/λ and data from hospital 1 we get

π(λ | y1) ∝λ π(y1 | λ)π(λ) ∝λ Poisson(y1; eiλ)/λ ∝λ ee1λλy1−1

∝λ Gamma(λ; y1, e1)

▶ The posterior after considering all data becomes

Gamma

 94∑
j=1

yi ,
94∑
j1

ei

 = Gamma(277, 294681) = Gamma(Sy ,Se).

▶ Note that the expected value becomes Sy/Se .
▶ Computing with the Poisson-Gamma conjugacy, we get that the

predictive distribution at new exposure e is

π(y) =
Poisson(y ;λe) Gamma(λ;Sy ,Se)

Gamma(λ;Sy + h,Se + e)

= Negative-Binomial

(
y ;Sy ,

Se
Se + e

)
.
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Assuming rates are independent

▶ If we use the improper prior π(λi ) ∝λi 1/λi , then the posterior
becomes improper for the hospitals where no deaths have occurred
(yi = 0). Problem!

▶ For other hospitals we get λi | data ∼ Gamma(yi , ei ), with
expectation yi/ei .

▶ We can use a proper prior, but where should the information come
from to make this prior?

▶ Most reasonable to pool the information form different hospitals, but
acknowledge that the λi may be different.
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Using a hierarchical model

▶ We assume the λi are sampled from some distribution, AND we try
to learn the parameters of this distribution from the data!

▶ We use the model

yi | λi ∼ Poisson(λiei ) and λi ∼ Gamma

(
α,

α

µ

)
,

π(α) ∝ 1

α
and π(µ) ∝µ

1

µ

▶ Note: With this parametrization, the expectation of the Gamma
distribution is µ and its standard deviation is µ/

√
α, so this

parametrization can be easily interpreted.

▶ We now have a fully specified Bayesian model with 96 parameters
µ, α, λ1, λ2, . . . , λ94.

▶ The posterior distribution on α will tell us to what extent the λi are
similar.
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Computations for the hierarchical model

▶ The model above has 94 + 2 unobserved variables. For more easy
computation, note that the distribution of y1, . . . , y94, α, and µ is
equivalent in the following marginalized model:

yi ∼ Neg-Binomial

(
α,

α/µ

α/µ+ ei

)
, π(α) ∝α

1

α
and π(µ) ∝µ

1

µ

▶ As we now only have 2 unknown variables, we can do inference for µ
and α for example with discretization or MCMC.

▶ If we then want the posterior density for some particular λj , note
that

λj | α, µ, data ∼ Gamma

(
α+ yj ,

α

µ
+ ej

)
.

▶ Computations (in R) can now answer questions such as
▶ What is the probability of no deaths in hospital 24 given a new

exposure of 1000?
▶ What is the probability that hospital 90 is really better than hospital

9, i.e., that λ90 < λ9?
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Computations for the hierarchical model

▶ For the posterior π(α, µ | data)

π(α, µ | data) ∝α,µ
1

αµ

94∏
i=1

Neg-Binomial

(
yi ;α,

α

α+ µei

)

∝α,µ
1

αµ

94∏
i=1

Γ(yi + α)

Γ(α)

(
α

α+ µei

)α(
µei

α+ µei

)yi

.

▶ To make the posterior more symmetrical, improve numerical
properties, and avoid problems that α and µ can only have positive
values, we do the reparametrization θ1 = log(α) and θ2 = log(µ),
i.e., α = eθ1 and µ = eθ2 .

13 / 20



Switching between several proposal functions

▶ We presented the Metropolis Hastings algorithm as using only one
proposal density.

▶ Actually
▶ you may use a whole menu of propsal functions, and
▶ you may switch between them in a systematic or random way,

as long as the resulting Markov chain in the end becomes ergodic.
▶ For some “difficult” posterior densities, you might usually use a

small-step random walk, but occasionally use a large-step proposal,
tailored to jump between separate “islands” of high posterior density.

▶ A very popular possibility: Using proposal densities that fix all but
one (or all but some) of the variables.

▶ You need to cycle through different proposal functions so that all
variables have a chance to be updated.

▶ When computing the acceptance probability

ρ(x (t), y) = min

(
f (y)q(x (t) | y)
f (x (t))q(y | x (t))

, 1

)
.

usually many factors cancel, so there are computational advantages.
▶ In Albert, this is called “Metropolis within Gibbs”.
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Gibbs sampling

▶ If (x1, x2, . . . , xn) is the variable vector, imagine that you cycle
through proposal functions j = 1, . . . , n, where proposal j only
changes xj , leaving all other variables unchanged.

▶ Assume in fact proposal j simulates a new proposed value x∗j from

π(xj | x1, . . . , xj−1, xj+1, . . . , xn),

the conditional distribution of xj given all the other variables.
▶ The acceptance probability in the MH algorithm is computed with

π(x∗)q(x | x∗)
π(x)q(x∗ | x)

=
π(x1, . . . , x

∗
j , . . . , xn)π(xj | x1, . . . , xj−1, xj+1, . . . , xn)

π(x1, . . . , xj , . . . , , xn)π(x∗j | x1, . . . , xj−1, xj+1, . . . , xn)

=
π(x1, . . . , xj−1, xj+1, . . . , xn)

π(x1, . . . , xj−1, xj+1, . . . , xn)
= 1

So accept always!
▶ This algorithm is called Gibbs sampling.
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Gibbs sampling: Small examples

▶ Example: Simulate from a bivariate normal distribution. The
conditional distributions are normal, formulas are given in a previous
lecture.

▶ Example: Data y1, y2, . . . , yn are from a Normal(µ, τ−1) distribution,
with independent priors µ ∼ Normal(0, 1) and τ ∼ Gamma(3, 4).
▶ When τ is fixed we get

µ | τ, data ∼ Normal

(
nyτ

nτ + 1
,

1

nτ + 1

)
.

▶ When µ is fixed we get

τ | µ, data ∼ Gamma

(
3 +

n

2
, 4 +

1

2

n∑
i=1

(yi − µ)2
)
.

▶ When τ is fixed, the formula above is a result of the formula for the
posterior in the Normal-Normal conjugacy with fixed precision.

▶ When µ is fixed, the formula above is a result of the formula for the
posterior in the Normal-Gamma conjugacy with fixed expectation.
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Gibbs sampling: Summary

▶ For many models it is easy to implement and program.

▶ In particular, in hierarchical models Gibbs sampling is sometimes
quite easy to find the formulas for (i.e., the conditional densities to
simulate from).

▶ No need to bother with acceptance probabilities!

▶ However, the convergence may be too slow for practical use if
▶ the variables are highly correlated in the posterior, or
▶ separate regions of high posterior density cannot easily be reached by

changing one variable at a time.

▶ You may use blocked Gibbs sampling: Updating a subset of the
variables sampling from their conditional distribution given the
remaining variables.
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Hierarchiclal models

▶ Sometimes, observed data have dependencies that can best be
described using a hierarchy.

▶ The heart transplant data is an example.

▶ Example: Test results for students may depend on the class they are
in, the school they attend, and the country they live in.

▶ A statistical model for the data should then contain a random
variable for each “source of influence”; they would depend on each
other in a hierarchy, which can be drawn as an upside-down tree, or
more generally as a network.

▶ When making computations, the tree structure can be very useful,
for example to find conditional distributions for Gibbs sampling.
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A hierarchical example

Data x1, . . . , x8 and y1, . . . , y6 are organized into groups, and we want to
predict a value z1 in a third group. We assume a model

x1, . . . , x8 ∼ Normal(µ1, τ
−1
1 )

y1, . . . , y6 ∼ Normal(µ2, τ
−1
1 )

z1 ∼ Normal(µ3, τ
−1
1 )

µ1, µ2, µ3 ∼ Normal(10, τ−1
0 )

τ0 ∼ Gamma(1, 4)

τ1 ∼ Gamma(7, 3)

▶ We can make predictions for z1 given data x1, . . . , x8 and y1, . . . , y6
by simulating with Gibbs sampling from the model where the data is
fixed and the remaining variables µ1, µ2, µ3, τ0, τ1, z1 are simulated.

▶ Note: The exact form for the conditional distributions of each of
these variables can be found using conjugacy.
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Conditional distributions for the example

The conditional distributions become (prove yourself!)

µ1 | x1, . . . , x8, τ1, τ0 ∼ Normal

(
10τ0 + 8xτ1
τ0 + 8τ1

,
1

τ0 + 8τ1

)
µ2 | y1, . . . , y6, τ1, τ0 ∼ Normal

(
10τ0 + 6yτ1
τ0 + 6τ1

,
1

τ0 + 6τ1

)
µ3 | z1, τ1, τ0 ∼ Normal

(
10τ0 + z1τ1
τ0 + τ1

,
1

τ0 + τ1

)
τ0 | µ1, µ2, µ3 ∼ Gamma

(
1 +

3

2
, 4 +

1

2

3∑
i=1

(µi − 10)2

)

τ1 | µ1, µ2, µ3, x1 . . . x8, y1 . . . y6, z1 ∼ Gamma

(
7 +

15

2
, 3 +

1

2

8∑
i=1

(xi − µ1)
2

+
1

2

6∑
i=1

(yi − µ2)
2 +

1

2
(z1 − µ3)

2

)
z1 | µ3, τ1 ∼ Normal(µ3, τ

−1
1 )
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