
State-space models and particle filters
MVE187-MSA101 “Computational methods for Bayesian statistics”, 2022

Umberto Picchini
7@uPicchini, picchini@chalmers.se

Chalmers University of Technology and University of Gothenburg
Sweden

1

Overview

• Today we turn to models with with a “time-structure”: At each
time point, the structure of the stochastic model is the same, but
variables change over time.

• We consider the case where the model produces observations Y,
considered as a “noisy” version of what we are ideally interested
in, denoted by X.

• We will look at some theory and algorithmic approaches.

2

It is often the case that what we observe a phenomenon and record
data: say data are denoted y1, ..., yt, ...yT .

Say that these data are in blue below:

3

Imagine hat the data are of type yt = xt + ϵt, for ϵ a zero-mean random
variable.
Think of (xt)t⩾0 as the black line, which is the true yet unknown state of a
system X at time t.

Assume we cannot really observe X exactly, i.e. the true X is hidden (latent)

4

Some terminology

• We have data (blue) that we have observed and denote these
with the letter yt at time t.

• yt is considered as a “noisy” measurement of some latent xt,
which we cannot directly observe exactly.

• Notation: when we write z1:t this means the sequence
z1:t = (z1, ..., zt).

5

However, despite X being hidden (unavailable) we can make use of the
actual observations (blue) y1:T = (y1, ..., yT) to learn something about X.

In red you see the result of a specific type of filter, the Kalman filter. While
the filter can only access the data (not X), it manages to filter-out some of the
noise and give us back a not too shabby approximation of X.

6

A very simple example

This is the model implemented in demo_sis.m and
demo_nimbleSMC.R.
Consider for t = 1, 2, ..., 30

yt = xt + ϵ
(1)
t , ϵ

(1)
t ∼iid N(0, 0.32)

xt = xt−1 + ϵ
(2)
t , ϵ

(2)
t ∼iid N(0, 1)

x0 ∼ N(0, 1)

The first equation implies that p(yt|xt) = N(xt, 0.32).
The second equation implies that p(xt|xt−1) = N(xt−1, 1).

But we may also assume unknown parameters such as{
yt = b · xt + ϵ

(1)
t , ϵ

(1)
t ∼iid N(0, 0.32)

xt = a · xt−1 + ϵ
(2)
t , ϵ

(2)
t ∼iid N(0, 1)

and be interested in inferring θ = (a, b) for given data y1, ..., yT .

Here p(yt|xt; a) = N(a · xt, 0.32) and p(xt|xt−1; b) = N(b · xt−1, 1). 7

What are we generally interested in?

Things we can learn from data:

• We can learn the distribution of model parameters θ for given data
y1, ..., yT ;

• We can learn the distribution of the latent xt given data y1, ..., yt

available up to t, that is

p(xt|y1, ..., yt; θ), this is the filtering distribution

• We can learn the distribution of the latent xt given all available data
y1, ..., yT available up to final time T

p(xt|y1, ..., yT ; θ), this is the smoothing distribution

• We can learn the distribution of the latent xt+k (k = 1, 2, ...) given
y1, ..., yt, that is

p(xt+k|y1, ..., yt; θ), this is the predictive distribution at lag k

8

There are very many examples where what we want to learn (X) is not
directly observable, but a noisy version of X (denoted with Y) is what
we can measure.

• Your exact position (X) on a landscape is not possible to obtain,
but can be approximated from GPS coordinates (Y).

• The exact number (X) of moose in a given area in a certain
month is difficult to get, because animals move around and some
leave the area some enter it. So Y is what we measure but it is
only an approximation of X.

• The average temperature in Sweden in October 2025 (denote this
with Xoct,25) cannot be predicted exactly. It can only be
approximated given observed past values in October from
previous years (eg by using Yoct,22, Yoct,21, ..., Yoct,18).

• etc...

Possible examples are endless!
9

State-space models

Many important applied problems can be treated by assuming that
there is a Markovian sequence of hidden variables x0, x1, . . . , xT .

Markovianity means that, for example

p(xt+1 | x0, x1, . . . , xt) = p(xt+1 | xt).

Putting this in words means:
“given the present xt, the future is independent of the past history
x0, x1, . . . , xt−1”.

Which means that every xt+1 is exclusively dependent on xt and on
nothing else. In terms of a graph of dependences with can write
xt → xt+1.

10

State space models

• But then, we said that we actually measure y1, ..., yT

• The above means that measurement yt results as a measurement
of xt and nothing else.

• The previous statement implies conditional independence of
observations: the current measurement yt given xt is
conditionally independent of the other measurements and state
histories

p(yt|x0:t, y1:t−1) = p(yt|xt).

or equivalently: given the value of xt, the variables yt, . . . , yT are
independent of variables y1, . . . , yt−1. 11

• We will only consider homogeneous Markov chains: The
variables xt are of the same type, and the conditional
distributions p(xt | xt−1) are all the same.

• We will also assume that the p(yt | xt)
1 are the same for all t (and

the variables yt are of the same type).

1These are called emission distributions in some literature.

12

State space models

In summary: a state-space model is characterised by

1. Markovianity of the latent (hidden) state X;
2. conditionally independent measurements Y.

The simple model
yt = b · xt + ϵ

(1)
t , ϵ

(1)
t ∼iid N(0, 0.32)

xt = a · xt−1 + ϵ
(2)
t , ϵ

(2)
t ∼iid N(0, 1)

x0 ∼ p(x0)

is a state-space model.

Clearly xt only depends on xt−1, not xt−k (k > 1) or anything else, so
it is Markovian.
Then yt only depends on xt and since the ϵ

(1)
t are all assumed

independent, for given xt all measurements are (conditionally)
independent.

13

State space models

• Thus, to specify such a state space model we need to specify

p(x0) p(xt | xt−1) p(yt | xt)

• The random variables xt and yt may be of any type, and may be
vectors!

• When xt are discrete variables with a finite number of possible
values, we call the above a Hidden Markov Model (HMM).

• If the variables are all (multivariate) normal, and if the
dependencies p(xt | xt−1) and p(yt | xt) are linear, we may call
the above a dynamical linear model.

14

So many definitions:

• State-space models..

• hidden Markov models...

• dynamical linear model...

Does it really matter to remember these? Not really! Just remember
the property of conditional independence of the observations and
Markovianity of the latent state.

From now on we only use the term state-space model, because it is
the one that seems the most persistent in literature.

15

As I said, we can do many things, parameter estimation, filtering,
smoothing,...

However no time to do everything. We start with the important
problem of estimating the likelihood function for parameters θ.

16

The likelihood function for SSMs

• In a state-space model (SSM) data are not independent, they are
only conditionally independent→ complication!:

p(y1:T |θ) = p(y1|θ)

T∏
t=2

p(yt|y1:t−1, θ) =?

Except for the simplest cases, we generally don’t have a closed-form
expression for the product above because we do not know how to
calculate p(yt|y1:t−1, θ).

Exceptions are for example linear/Gaussian models where Kalman
filtering can be applied (important but we have no time to cover this).

17

In a SSM the observed process is assumed to depend on the latent
Markov process {Xt}: we can write

p(y1:T |θ) =

∫
p(y1:T , x0:T |θ)dx0:T =

∫
p(y1:T |x0:T , θ)︸ ︷︷ ︸

use cond. indep.

× p(x0:T |θ)︸ ︷︷ ︸
use Markovianity

dx0:T

=

∫ T∏
t=1

p(yt|xt, θ)×
{

p(x0|θ)

T∏
t=1

p(xt|xt−1, θ)
}

dx0:T

Problems

• The expression above is a (T + 1)-dimensional integral /

• For most (nontrivial) models, transition densities p(xt|xt−1; ·) are
unknown /

18

General Monte Carlo integration

Another equivalent way to write the likelihood function:

p(y1:T |θ) = p(y1|θ)

T∏
t=2

p(yt|y1:t−1, θ)

We can write p(yt|y1:t−1, θ) as

p(yt|y1:t−1, θ) =
∫

p(yt|xt, θ)p(xt|y1:t−1, θ)dxt = E(p(yt|xt, θ))

Use Monte Carlo integration: generate N draws from p(xt|y1:t−1, θ), then
invoke the law of large numbers.

• produce N independent draws xi
t ∼ p(xt|y1:t−1, θ), i = 1, ..., N

• for each xi
t compute p(yt|xi

t, θ)

• and by LLN we have

1
N

N∑
i=1

p(yt|xi
t, θ)→ E(p(yt|xt, θ)), N →∞

• error term is O(N−1/2) regardless the dimension of xt ,
19

SMC and the bootstrap filter

But how to generate “good” draws (particles) xi
t ∼ p(xt|y1:t−1, θ)?

Here “good” means that we want particles such that the values of
p(yt|xi

t, θ) are not negligible (“explain” a large fraction of the
integrand).

For SSM, sequential Monte Carlo (SMC) is the winning strategy.

We will NOT give a thorough introduction to SMC methods. We only
use a few notions to solve our parameter inference problem.

[the term particle filters can be used interchangeably with SMC.]

20

Importance sampling

(to simplify reading her I remove the dependence on θ).

p(yt|y1:t−1) =

∫
p(yt|x0:t)p(x0:t|y1:t−1)dx0:t

=

∫
p(yt|xt)p(xt|xt−1)p(x0:t−1|y1:t−1)dx0:t

=

∫
p(yt|xt)p(xt|xt−1)p(x0:t−1|y1:t−1)

h(x0:t|y1:t)
h(x0:t|y1:t)dx0:t

where h(·) is an arbitrary (positive) density function called
“importance density”. Choose an h(·) “easy to simulate from”.

1. simulate N iid samples: xi
0:t ∼ h(x0:t|y1:t), i = 1, ..., N

2. construct importance weights wi
t =

p(yt|xi
t)p(xi

t|x
i
t−1)p(xi

0:t−1|y1:t−1)

h(xi
0:t|y1:t)

3. p(yt|y1:t−1) = E(p(yt|xt)) ≈ 1
N

∑N
i=1 wi

t

21

Importance Sampling

However generating at each time a “cloud of particles” xi
0:t is not

really computationally appealing, and it’s not clear how to do so.

Much better to try to split the problem into a sequential mechanism,
as t increases.

22

Sequential Importance Sampling

When h(·) is chosen in an intelligent way, an important property is the
one that allows sequential update of weights. After some derivation ,
we have (see p. 121-122 in Särkkä2 and p. 252 in Creal)

wi
t ∝

p(yt|xi
t)p(x

i
t|x

i
t−1)

h(xi
t|xi

0:t−1, y1:t)
w̃i

t−1, i = 1, ..., N

where the proportionality symbol means that we will not particularly
care of the (unknown) proportionality constant, and w̃ denotes
normalised weights, i.e.

w̃i
t−1 =

wi
t−1∑N

i=1 wi
t−1

2Särkkä, Bayesian filtering and smoothing, available here.

23

https://www.tandfonline.com/doi/pdf/10.1080/07474938.2011.607333?needAccess=true
http://users.aalto.fi/~ssarkka/pub/cup_book_online_20131111.pdf

However, for brevity, I immediately go to a simpler version, since for
most SSM we do not typically know how to specify a h(xi

t|x
i
0:t−1, y1:t)

that depends on data y1:t.

A simple, popular (but sometimes computationally inefficient)
possibility is to take

h(xi
t|x

i
0:t−1, y1:t) ≡ p(xi

t|x
i
t−1)

this is the transition density!
And even if we do not know its expression look what happens:

wi
t ∝

p(yt|xi
t)p(x

i
t|x

i
t−1)

h(xi
t|xi

0:t−1, y1:t)
w̃i

t−1 = p(yt|xi
t)w̃

i
t−1

We now have a very simple expression that we can *always* evaluate
for ANY SSM.
We only need to know how to simulate from p(xi

t|x
i
t−1) but this can

always be done.
24

Example

Recall the simple model
yt = b · xt + ϵ

(1)
t , ϵ

(1)
t ∼iid N(0, 0.32)

xt = a · xt−1 + ϵ
(2)
t , ϵ

(2)
t ∼iid N(0, 1)

x0 ∼ p(x0)

suppose noone told you that p(xt|xt−1) = N(a · xt−1, 1) (though it is evident,
but let’s pretend we had no clue). But still, you can write a computer code
that runs

x[t] = a*x[t-1] + runif(1)

and the x[t] you generated is certainly distributed as
p(xt|xt−1) = N(a · xt−1, 1).

So you can always simulate, even though you may not know the
actual transition density.

25

(simplified) Sequential importance sampling

We can now write a simplified sequential algorithm where we sample from
the transition density (I removed conditioning on θ everywhere to ease
reading):

1. t = 0 (initialize) xi
0 ∼ p(x0), assign w̃i

0 = 1/N, i = 1, ..., N

2. at the current t assume we have the particles xi
t

3. From your model propagate forward xi
t+1 ∼ p(xt+1|xi

t), i = 1, ..., N.

4. Compute (unnormalised weights)

wi
t+1 ∝ p(yt+1|xi

t+1)× w̃i
t.

5. we can finally approximate (Creal, p. 253←− hyperlink)

p̂(yt+1|y1:t) =

N∑
i=1

wi
t+1w̃i

t

and normalise weights w̃i
t+1 = wi

t+1/
∑N

i=1 wi
t+1

6. set t := t + 1 and if t < T go to step 2. 26

https://www.tandfonline.com/doi/abs/10.1080/07474938.2011.607333?journalCode=lecr20

Coding

In terms of coding, in step 5 it makes sense to start multiplying the
likelihood terms: say that in step 1 you initialize the likelihood as
lik=1, then in step 5 you code a recursion

lik = lik×
N∑

i=1

wi
t+1w̃i

t

so at the end of T iterations the code returns you the likelihood
approximation lik= p̂(y1:T |θ).

Even better (often necessary!) code everything on the log-scale, eg
initialize a loglikelihood loglik=0 and then in step 5 update it as

loglik = loglik+ log
(N∑

i=1

wi
t+1w̃i

t
)

27

A worked-out experiment

An example of sequential importance sampling (SIS) is coded in the
Matlab file I put on Canvas, called demo_sis.m.

Why Matlab? Because I wanted to provide you with a starting point
to understand how do to things, but I still want you to code it in R to
fix things in mind, without passively relying on my code.

In demo_sis.m we use the following model:
yt = b · xt + ϵ

(1)
t , ϵ

(1)
t ∼iid N(0, 0.32)

xt = a · xt−1 + ϵ
(2)
t , ϵ

(2)
t ∼iid N(0, 1)

x0 = 0

(notice here x0 = 0 deterministically) and data (file yobs.dat) is a
sequence of length T = 30 generated with a = b = 1.

28

0 5 10 15 20 25 30

0
1

2
3

data and true latent state

time

Figure 1: Observed y values (circles) and the true x values (green line).

Notice, consistently with our notation, data start being observed at
t = 1. However x0 = 0 at t = 0 (not depicted in the figure).

29

I run SIS with N = 1000 particles while using a = b = 1 and obtain

loglik = -78.5547

but of course that’s just a single run. The approximated loglikelihood
is a random variable now (due to Monte Carlo), and if I rerun the filter
I obtain something a little different. That’s normal!

But is it working?

I compute a bunch of loglikelihoods for b = 1 kept fixed and let a
change between a ∈ [0.2, 2]].

What we wish is the loglikelihood to peak around a = 1 (truth).

30

N=1000

0.2 0.4 0.6 0.8 1 1.2 1.4

a

-1000

-900

-800

-700

-600

-500

-400

-300

-200

-100

loglik for several values of a (and b is kept fixed to 1)

Allright it peaks close to a=1, but if you try multipe times you obtain
results not always satisfactory. Also, for a > 1.3 everything badly
underflows numerically and we get no meaningful result.

We can do better! (Next lecture).

For now, let’s just increase N. 31

Ten runs with N=5000

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

a

-2500

-2000

-1500

-1000

-500

0

loglik for several values of a (and b is kept fixed to 1)

32

Ten runs with N=10000

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

a

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0
loglik for several values of a (and b is kept fixed to 1)

33

I mean, this filter barely works and there is a good reason for this
(next lecture!). And if it is not great with such a simple model, it turns
completely useless with more advanced ones.

There is a very simple modification to make, but a killer one!

34

An exercise

Look at demo_sis.m (*not* demo_NimbleSMC.R, that one will
be discussed next week). If you can, try to run it, otherwise I hope it
is fairly clear to read. Then implement in pure R (no special packages
needed) the most important part, the SIS particle filter function that
you find from line 50 onward. Write an R script that runs said particle
filter with the observations I uploaded on Canvas.

It is good to try to obtain plots similar to those shown in the slides for
a=b=1 (remember plots will differ from mine as you cannot reuse my
same pseudorandom numbers) and for a grid of several values of a
with b fixed to 1.

Show plots.

Try to see what happens for several values of N.

What happens if you set x0 = 10? Any explanation?
35

