
State-space models: bootstrap filter and particle
MCMC
MVE187-MSA101 “Computational methods for Bayesian statistics”, 2022

Umberto Picchini
7@uPicchini, picchini@chalmers.se

Chalmers University of Technology and University of Gothenburg
Sweden

1

Overview

• Today we continue with inference for state-space models.

• We find out why the basic SIS was unsatisfactory and fix it to
obtain a better likelihood approximation.

• We also (informally) look at the filtering distribution.

• We look at how to perform parameter inference by embedding
particle filters into Metropolis-Hastings.

2

I quickly summarise some of the findings of the previous lecture.

We have the likelihood function

p(y1:T |θ) = p(y1|θ)

T∏
t=2

p(yt|y1:t−1, θ)

and mentioned that we wanted to approximate the likelihood via
importance sampling as

p(yt|y1:t−1) =

∫
p(yt|xt)p(xt|xt−1)p(x0:t−1|y1:t−1)

h(x0:t|y1:t)
h(x0:t|y1:t)dx0:t.

Then, it was discussed that, in practice, instead of trying to

approximate the t + 1-dimensional integral above in one-go, it was
easier to design a sequential strategy that recursively approximate the
integral.

We had that we can approximate p(yt|y1:t−1) with

p̂(yt|y1:t−1) =

N∑
i=1

p(yt|xi
t)p(x

i
t|x

i
t−1)

h(xi
t|xi

0:t−1, y1:t)
w̃i

t−1, i = 1, ..., N 3

Then I mentioned that, except for the simplest models, it is often
difficult to “construct” an importance function h(·|x0:t−1, y0:t) that is
able to “look ahead” and see the next observation yt, we simply take

h(xt|x0:t−1, y0:t) = p(xt|xt−1)

the transition density, that we always know how to sample from by
running the latent model forward (even if we have no idea of which
specific distribution it is).

Thanks to this simplification (which has downsides, as we will see)
we get

p̂(yt|y1:t−1) =

N∑
i=1

p(yt|xi
t)w̃

i
t−1, i = 1, ..., N

or, by setting wi
t = p(yt|xi

t) and w̃i
t = wi

t/
∑N

i=1 wi
t,

p̂(yt|y1:t−1) =

N∑
i=1

wi
tw̃

i
t−1, i = 1, ..., N

4

(simplified) Sequential importance sampling

Then we obtained the following sequential algorithm where we “propagate
forward” from the transition density:

1. t = 0 (initialize) xi
0 ∼ p(x0), assign w̃i

0 = 1/N, i = 1, ..., N

2. at the current t assume we have the particles xi
t

3. From your model propagate forward xi
t+1 ∼ p(xt+1|xi

t), i = 1, ..., N.

4. Compute (unnormalised weights)

wi
t+1 ∝ p(yt+1|xi

t+1)× w̃i
t.

5. we can finally approximate (Creal, p. 253←− hyperlink)

p̂(yt+1|y1:t) =

N∑
i=1

wi
t+1w̃i

t

and normalise weights w̃i
t+1 = wi

t+1/
∑N

i=1 wi
t+1

6. set t := t + 1 and if t < T go to step 2.
5

https://www.tandfonline.com/doi/abs/10.1080/07474938.2011.607333?journalCode=lecr20

We found out that even for a simple example the approximation was
poor, even when using N very large.

Let’s see what happened for the usual model

6

usual example

In demo_sis.m we use the following model:
yt = b · xt + ε

(1)
t , ε

(1)
t ∼iid N(0, 0.32)

xt = a · xt−1 + ε
(2)
t , ε

(2)
t ∼iid N(0, 1)

x0 = 0

and in the previous lecture, just for illustration, we set b = 1 constant
to the true value that generated data and let a vary on a grid of values.

7

Ten runs with N=10000

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

a

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0
loglik for several values of a (and b is kept fixed to 1)

The data-generating value was a = 1, but the likelihood approximation does
not seem very informative about the optimal value of a.

Notice: sometimes observed data are not informative enough (eg too small
dataset). But it is NOT the case here, it is something else.

8

How do the simulated x values look?

[notice I uploaded a new, slightly modified SIS file
demo_sis_with_states.m]

I collect the simulated x values and they look like (here N=20 just to make
things not too messy to read)

0 5 10 15 20 25 30

-15

-10

-5

0

5

10

15
Data and filtered states x

Clearly the x values go allover the place and won’t get much weight in
p(yt|xt) = N(xt, 0.32). So the likelihood is badly approximated.

9

The trick will be to not allow particles that have low weight wt at
time t to keep existing at time t + 1.

We want to kill those state values (particles) that seem improbable.

An in fact, if particle xi
t−1 has low weight wi

t−1, then

w̃i
t−1 = wi

t−1/
∑

i

wi
t−1

will become small and this particle will be forever doomed, see next
slide.

10

It is not unusual that a particle gets an exactly zero weight, since your
computer sets to zero a very small yet in principle strictly positive wt.
This is called numerical underflow, and that particle is doomed! Since

wi
t ∝

p(yt|xi
t)p(x

i
t|x

i
t−1)

h(xi
t|xi

0:t−1, y1:t)
w̃i

t−1.

if for a given i we have w̃i
t−1 = 0, then particle i will get zero weight

for all subsequent times.

11

Example of underflow

example, say that you want to evaluate particle value xi
t = 40 in

p(yt|xi
t) = N(xi

t; 0, 1)

dnorm(40,0,1)

[1] 0

and even if you work on the log-density domain

> logw=dnorm(40,0,1,log=TRUE)

> exp(logw)

[1] 0

12

Also if we all of a sudden get an outlier, this could potentially
underflow most (all?) weights, say we have this dataset

So, as I said we really need to get rid of unpromising particles and let
them die (→ no propagation forward from those ones).

The key idea is to do resampling with replacement according to
normalised weights.

13

The Resampling idea

A life saving solution is to use resampling with replacement.

Say that we are at time t and obtained the particles x1
t , ..., xN

t and their
unnormalised weights w1

t , ..., wN
t .

1. (normalization) set w̃i
t := wi

t/
∑N

i=1 wi
t, for every i = 1, ..., N. Clearly

w̃i
t ∈ (0, 1).

Interpret w̃i
t as the probability attached to xi

t in the weighted set
{xi

t, w̃i
t, i = 1, ..., N}.

2. draw N particles with replacement from the weighted set. Call the
drawn particles {x̃1

t , ..., x̃N
t } and replace the original ones with

{x̃1
t , ..., x̃N

t }.

3. After resampling, consider the new particles as all having the same
importance, that is give them all wi

t = 1/N.

4. Now propagate forward each of the particles x̃i
t → xt+1 as usual by

running your model.
14

The key part was that in the last step we wrote

x̃i
t → xt+1.

This means that we propagate forward only the resampled
particles. The others peacefully die out!

15

Propagation→weighting→resampling→propagation of resampled
particles→weighting→etc

16

The next animation illustrates the concept of sequential importance
sampling resampling with N = 5 particles.

• Cyan: observed trajectory (data)

• dark blue: simulation of the latent process {Xt}

• pink balls: particles xi
t

• green balls: selected particles x̃i
t from resampling

• red curves: density p(yt|xt)

17

18

Bootstrap filter for likelihood approximation

This is also aptly named SIS with resampling:

1. t = 0 (initialize) xi
0 ∼ p(x0), assign w̃i

0 = 1/N, for i = 1, ..., N

2. at the current t we have the weighted set {xi
t, w̃i

t}
N
i=1.

3. From {xi
t, w̃i

t}
N
i=1 resample particles with replacement N times, to obtain

{x̃i
t}

N
i=1. Then reset w̃i

t = 1/N for i = 1, ..., N.

4. For resampled particles: propagate forward xi
t+1 ∼ p(xt+1|x̃i

t),
i = 1, ..., N.

5. Compute (unnormalised weights)

wi
t+1 ∝ p(yt+1|xi

t+1)× w̃i
t = p(yt+1|xi

t+1)× 1/N.

6. approximate the likelihood term as usual

p̂(yt+1|y1:t) =

N∑
i=1

wi
t+1w̃i

t =

N∑
i=1

wi
t+1/N

7. normalise: w̃i
t+1 = wi

t+1/
∑N

i=1 wi
t+1 and go to step 3.

19

The usual example

Let’s look at how the propagated trajectories look, with as little as
N = 20 with bootstrap filter (left) and SIS (right).

0 5 10 15 20 25 30

-15

-10

-5

0

5

10

15
Propagated x values using bootstrap filter with N=20

0 5 10 15 20 25 30

-15

-10

-5

0

5

10

15
Data and filtered states x

Of course we could use a larger N but visually the plots would look to
dense.

Let’s now look at the loglikelihood approximation.
20

LogLikelihood approximations for varying a and fixed b

Same as we did with SIS: let a vary and b is kept fixed to truth b = 1.
Here N = 1, 000, and we approximate the loglikelihood functions
across 10 independent runs.

We use bootstrap filter (left) and SIS (right).

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20
loglikelihood function via bootstrap filter, N=1,000

0.2 0.4 0.6 0.8 1 1.2 1.4

a

-1000

-900

-800

-700

-600

-500

-400

-300

-200

-100
loglikelihood function via SIS, N=1,000

Notice the y-axis are on very different scales.
Also notice SIS is unable to return values for a > 1.4. 21

LogLikelihood approximations for varying a and fixed b

Now use N = 5, 000.

We use bootstrap filter (left) and SIS (right).

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-110

-100

-90

-80

-70

-60

-50

-40

-30
loglikelihood function via bootstrap filter, N=5,000

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

a

-2500

-2000

-1500

-1000

-500

0
Likelihood function via SIS, N=5,000

Notice the y-axis are on very different scales.
We have finally found a criterion that clearly displays a maximizer
around a = 1 as wanted.

22

So the bootstrap filter by Gordon et al. (1993)1 easily provides what we
need!

• p̂(yt|y1:t−1; θ) = 1
N

∑N
i=1 wi

t

• Finally a likelihood approximation:

p̂(y1:T |θ) = p̂(y1)

T∏
t=2

p̂(yt|y1:t−1; θ)

We could use it for:

• approximate maximum likelihood

θmle = argmaxθp̂(y1:T ; θ)

or

• Bayesian inference by plugging p̂(y1:T |θ) inside Metropolis-Hastings.
1Gordon, Salmond and Smith. IEEE Proceedings F. 140(2) 1993.

23

Resampling particles using some software

To resample particles you can make use of built-in routines. Always
remember that in this context we wish to sample with replacement.
Below normw denotes the normalised weights w̃ at a given time and
xres is the vector of resampled particles obtained from the current x.

• In R you can use xres <- sample(x, size = N, replace

= TRUE, prob = normw)

• Or, again in R, I believe the most efficient way is to first sample
indeces of the particles via index <- sample.int(N, size =

N, replace = TRUE, prob = normw)

and then create xres <- x[,index] (assuming you created x to
be a matrix with N columns).

24

Sampling parameters from the posterior

Now we focus on obtaining parameter inference in a Bayesian way,
that is obtain uncertainty quantification by sampling from the
posterior distribution.

What we did so far was looking at some plots of the likelihood, but
that’s unsatisfactory because we kept one parameter fixed and let
another one vary: this is too empirical.

Luckily, you have already seen the tool that we need to use. It is
MCMC via Metropolis-Hastings.

Let’s refresh our memory.

25

Metropolis-Hastings

We wish to sample from the posterior π(θ|y1:T) ∝ p(y1:T |θ)× π(θ).

However in practice we can only sample from

π̂(θ|y1:T) ∝ p̂(y1:T |θ)× π(θ),

with p̂(y1:T |θ) approximated via particle filters, eg via bootstrap filter.

Since we embed a particle filter inside an MCMC algorithm, this
strategy is often called particle MCMC2.

For our usual example, θ = (a, b) and we need to specify priors for a
and b.

2An introduction is in Dahlin-Schön. The original, way more technical, paper is
Andrieu et al. here.

26

https://arxiv.org/pdf/1511.01707.pdf
https://www.jstor.org/stable/40802151

Metropolis-Hastings (“particle MCMC” in this context)

Initialization: Set a starting value θ1 = θ∗, eg the mean of the priors
of a and b. Set N and R the number of iterations for
Metropolis-Hastings. Compute the initial p̂(y1:T |θ

∗). Define a
proposal g(θ ′|θ). Set r = 1.

1. Propose a move θ# ∼ g(θ|θ∗) and run the bootstrap filter using
θ# to obtain p̂(y1:T |θ

#).
2. Generate a uniform random draw u ∼ U(0, 1), and calculate the
acceptance probability

α = min
[

1,
p̂(y1:T |θ

#)

p̂(y1:T |θ∗)
× g(θ∗|θ#)

g(θ#|θ∗)
× π(θ

#)

π(θ∗)

]
.

If u > α, set θr+1 := θr otherwise set θr+1 := θ#, θ∗ := θ# and
p̂(y1:T |θ

∗) := p̂(y1:T |θ
#). Set r := r + 1 and go to step 3.

3. Repeat steps 1–2 as long as r 6 R.

27

The resulting sequence θ1,, θR (possibly after having discarded
some initial burnin iterations) is a Markov chain having π̂(θ|y1:T) as
stationary distribution.

28

Bayesian inference for a and b

The following is coded in demo_pmcmc.m.

I made the following assumptions but this is just for illustration, you are free
to change this.

• Joint prior for θ = (a, b) given by π(θ) = π(a)π(b) (a and b a-priori
independent) with π(a) = N(0.5, 1), π(b) = N(1.5, 0.52).

• g(θ|θ∗) = MVN(θ∗,Σ), a multivariate Gaussian with mean θ∗ and
diagonal covariance matrix

Σ =

[
0.12 0

0 0.12

]

Notice the chosen g(·|·) is symmetric, eg g(θ#|θ∗) = g(θ∗|θ#), so it
simplifies out in α (no need to code it in the ratio).

29

Recall the used data have been generated with a = b = 1 so we hope
to recover these values to some extent.

These results used N = 1, 000 particles, R = 2000 MCMC iterations.
I used a starting θ1 = (a1 = 0.1, b1 = 2.5).

0 500 1000 1500 2000

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
MCMC chain for a (incl. burnin)

0 500 1000 1500 2000

0

0.5

1

1.5

2

2.5

3
MCMC chain for b (incl. burnin)

30

The marginal posteriors below are produced by disregarding the first 200
iterations (burnin).

True values a = b = 1 are likely in the posterior (which is good) but we also
have some uncertainty.

If you didn’t know that in reality true values are a=b=1, what you would
concluded is that, conditional to observed data, the true value of a should be
with high probability somewhere between 0.6 and 1.1, while for b is
somewhere between 0.6 and 1.2.

31

Would you have expected less variability? You can do the following:

• When constructing the experiment, try to get more data
(posterior converges to truth as data size grows to infinity).

• For real studies: learn from previous literature and previous
experiment (or construct experts), so you can encode a more
informative prior that could have some effect on the posterior.

• The results are depending on the quality of the model you
design: if the model is inappropriate, inferences will be flawed.
But we never know the true model generating the data (except in
simulation studies like the one we did).

32

Tips for Metropolis-Hastings

As usual, best to code things on log-scale for numerical stability.

In demo_pmcmc.m I did the following: instead of coding (notice I
simplified-out the ratio of symmetric proposal densities)

α = min
[

1,
p̂(y1:T |θ

#)

p̂(y1:T |θ∗)
× π(θ

#)

π(θ∗)

]
.

If u > α, set θr+1 := θr...

I coded

logα = min
[

0, log p̂(y1:T |θ
#) − log p̂(y1:T |θ

∗) + logπ(θ#) − logπ(θ∗)
]

.

If log u > logα, set θr+1 := θr...etc.

The latter is a completely equivalent but safer approach.

(optional for those interested: more Metropolis-Hastings tips here.)

33

https://umbertopicchini.wordpress.com/2017/12/18/tips-for-coding-a-metropolis-hastings-sampler/

Canvas uploads

You find on Canvas:

• demo_sis_with_states.m: this is a better version of
demo_sis.m. You can delete the latter. The new version is also
able to plot the x states, so it is more useful.
• demo_bootstrap.m which illustrates the bootstrap filter.
• demo_pmcmc.m which illustrates particle MCMC, i.e.

produces Bayesian inference via Metropolis-Hastings +
bootstrap particle filter.
• demo_nimbleSMC.R which illustrates the bootstrap particle

filter in R using nimbleSMC, without specifying parameters a
and b.
• demo_nimbleSMC_with_parameters.R same as above,

but here you can easily provide values for parameters a and b.

34

A possible exercise

• If you did last week’s exercise (constructing the SIS filter in R),
building the bootstrap filter will be a trivial modification of the SIS
filter. Of course you can look at the uploaded Matlab version for
inspiration.

• Once the above is done, you may build your own particle MCMC
sampler for a and b, for example using the same setup I used, or a
different one, and obtain draws from π̂(a|y1:T) and π̂(b|y1:T).

• What happens if you start at very unlikely (extreme) values of a and b?
Do you observe a lot of rejections? If yes, can you repair this by
increasing N? Any intuition why N could have anything to do with
MCMC rejections?

• To verify that your custom R code for particle MCMC worked as
expected, you may also compare against a version using loglikelihoods
obtained via the bootstrap filter as in nimbleSMC (as illustrated in
demo_nimbleSMC_with_parameters.R), at any given
proposed parameter value.

35

