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Missing file

There was a file missing that is needed to run my demo_bootstrap.m
and demo_pmcmc.m. Now resampling.m has been added on
Canvas (performs resampling with replacement for the bootstrap
filter).
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Goals

• We have previously obtained likelihood approximations for
state-space models.

• We constructed particle MCMC to perform Bayesian inference
for the parameters using an approximate likelihood.

• We are going to look at the surprising results showing that we are
actually doing exact Bayesian inference.

• More topics may follow (if time allows) in a different set of
slides, ie ABC (approximate Bayesian computation).
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When we constructed the bootstrap filter, essentially we found that

p̂(yt|y1:t−1; θ) =
1
N

N∑
i=1

wi
t =

1
N

N∑
i=1

p(yt|xi
t), xi

t ∼ p(xt|xt−1), i = 1, ..., N

this implying the approximate likelihood:

p̂(y1:T |θ) =

T∏
t=1

p̂(yt|y1:t−1; θ) =
T∏

t=1

(
1
N

N∑
i=1

wi
t)

and of course this means that p̂(y1:T |θ) is a random draw (repeated
evaluations of p̂(y1:T |θ

∗) will give different results at the same θ∗

value).

This unlike the true p(y1:T |θ
∗) which will deterministically give you

the same value at a given θ∗ value.
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So what are we really sampling from?

When producing p̂(y1:T |θ) how many things have been simulated from some
probability distribution?

Surely the particles are randomly simulated. And these particles are
functions of pseudo-random numbers. Say we call ξ these pseudo-random
numbers.

Here follow examples.
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Our basic example:

yt = xt + ε
(1)
t , ε

(1)
t ∼iid N(0, 0.32)

xt = xt−1 + ε
(2)
t , ε

(2)
t ∼iid N(0, 1)

Here ε(1)
t ∼iid N(0, 0.32) can alternatively be thought as 0.3 · ξt,

where ξt ∼ N(0, 1).

So, in practice to simulate the model we only need access to standard
Gaussian samplers.
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Example: (this is finally a nonlinear model)xt = 0.5xt−1 + 25 xt−1
(1+x2

t−1)
+ 8 cos(1.2(t − 1)) + N(0, q),

yt = 0.05x2
t + N(0, r),

or alternatively written asxt = 0.5xt−1 + 25 xt−1
(1+x2

t−1)
+ 8 cos(1.2(t − 1)) +

√
q · ξ(1)

t

yt = 0.05x2
t +
√

r · ξ(2)
t

with ξ(1)
t ∼ N(0, 1) and ξ(2)

t ∼ N(0, 1).
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What about other distributions?

It is remarkable that to simulate from very many distributions it is
enough to be able to sample from the uniform U(0,1) distribution and
the standard N(0,1) distribution.

For example, the inverse transform theorem shows that if X is a
continuous random variable with an invertible cdf FX(x), then you can
sample an x from its distribution by using

x := F−1
X (u), u ∼ U(0, 1)

Ex: say we want to sample from the exponential Exp(λ) distribution.
We know FX(x) = 1 − e−λx for x > 0, then since any cdf is uniform
distributed U := FX(x) ∼ U(0, 1), we set U = 1 − e−λx meaning that
x = − 1

λ log(1 − U).

So if you draw a u∗ ∼ U(0, 1), then x∗ = − 1
λ log(1 − u∗) is

x∗ ∼ Exp(λ) 8



The inverse transform theorem is very general. It implies that if a
random variable X has an invertible cdf then you only need uniforms
in (0,1) to simulate from the distribution of X.

Another example (check Wikipedia): the Box-Muller method shows
that to generate N(0,1) random draws, you can make use of uniform
draws.

I could go on and on but you got the gist. Often, to simulate even
complex systems, if you go look into the details, these complex
systems are (possibly complicated) transformations of very basic
random numbers such as N(0,1) and U(0,1).
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Therefore, our particles xi
t are generally functions of “simple” random

numbers that we collectively denote with ξ, where often ξ are N(0,1)
or U(0,1).

So for our simple model, certainly

ξ =
(
(ξ

(1)
1 , ξ(2)

1 ), ..., (ξ(1)
T , ξ(2)

T ), ...?
)

and what other random variates can we also include?

Resampling! Performing resampling involves the generation of
uniform pseudo-random numbers so we finally have

ξ =
(
(ξ

(1)
1 , ξ(2)

1 ), ..., (ξ(1)
T , ξ(2)

T ),

plus ALL the pseudo-random numbers produced during resampling
)
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In particle MCMC, Metropolis-Hasting actually samples from an
artificially extended posterior

π̂(θ, ξ|y1:T) ∝ p̂(y1:T |ξ, θ) · p(ξ) · π(θ)

1. current value is θr, propose a new θ∗ ∼ q(θ∗|θr), e.g.
θ∗ ∼ N(θr,Σθ) for some covariance matrix Σθ.

2. Sample ξ∗ ∼ p(ξ) (useful for propagation and resampling)

3. compute

A =
p̂(y1:T |ξ

∗, θ∗)
p̂(y1:T |ξr, θr)

× p(ξ∗)
p(ξr)

× π(θ
∗)

π(θr)
× q(θr|θ

∗)

q(θ∗|θr)

Draw a uniform u ∼ U(0, 1) and if u < A accept (θ∗, ξ∗) and set
(θr+1, ξr+1) := (θ∗, ξ∗).
Otherwise, reject, and set (θr+1, ξr+1) := (θr, ξr).

4. Set r := r + 1, go to 1 and repeat.
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However in practice we do not need to bother storing the ξ, as we are
not interested in those.

If we only keep the sampled θ and disregard the ξ, we are implicitly
sampling from

π̂(θ|y1:T) =

∫
π̂(θ, ξ|y1:T)dξ

which is the marginal of π̂(θ, ξ|y1:T) and the object we are actually
interested in sampling from.
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Incredible result

Quite astonishingly Andrieu and Roberts1 proved that using an unbiased and
non negative estimate of the likelihood function into the MCMC routine is
sufficient to obtain exact Bayesian inference for θ

That is using the Metropolis-Hastings acceptance probability

min
{

1,
p̂(y1:T |ξ

∗, θ∗)
p̂(y1:T |ξ, θ)

× p(ξ∗)
p(ξ)

× π(θ
∗)

π(θ)
× q(θ|θ∗)

q(θ∗|θ)

}
will return a Markov chain with stationary distribution π(θ|y1:T) regardless
the finite number N of particles used to approximate the likelihood!.

The good news is that Eξ(p̂(y1:T |ξ, θ)) = p(y1:T |θ) with p̂(y1:T |ξ, θ)
obtained via SMC.

1Andrieu and Roberts (2009), Annals of Statistics, 37(2) 697–725.
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The previous result is, in my opinion, one of the most important statistical
results of the last 30 years.

In fact, it offers an “exact-approximate” approach, where because of
computing limitations we can only produce N <∞ particles, while still be
reassured to obtain exact (Bayesian) inference under minor assumptions.

But let’s give a rapid (technically informal) look at why it works.

Key result: unbiasedness (del Moral 20042)
We have that

Eξ(p̂(y1:T |ξ, θ)) =
∫

p̂(y1:T |θ, ξ)p(ξ)dξ = p(y1:T |θ)

with ξ ∼ p(ξ) vector of all random variates generated during SMC (both to
propagate forward the state and to perform particles resampling).

2Easier to look at Pitt, Silva, Giordani, Kohn. J. Econometrics 171, 2012 or page 87
of Naesseth’s PhD thesis 2018.
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To prove the exactness of the approach we look at the (easier and less
general) argument in sec. 2.2 of Pitt, Silva, Giordani, Kohn. J.
Econometrics 171, 2012 or my even more introductive blog post.

To simplify the notation take y := y1:T .

• π̂(θ, ξ|y) approximate joint posterior of (θ, ξ) obtained via SMC

π̂(θ, ξ|y) =
p̂(y|θ, ξ)p(ξ)π(θ)

p(y)

(notice ξ and θ are assumed a-priori independent)

Notice we put p(y) not p̂(y) at the denominator: this follows
from the unbiasedeness assumption as we obtain∫ ∫

p̂(y|θ, ξ)p(ξ)π(θ)dξdθ =
∫
π(θ){

∫
p̂(y|θ, ξ)p(ξ)dξ}dθ =∫

π(θ)p(y|θ)dθ = p(y).
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The exact (unavailable) posterior of θ is

π(θ|y) =
p(y|θ)π(θ)

p(y)

therefore the marginal likelihood (evidence) is

p(y) =
p(y|θ)π(θ)
π(θ|y)

and

π̂(θ, ξ|y) =
p̂(y|θ, ξ)p(ξ)π(θ)

p(y)

=
π(θ|y)p̂(y|θ, ξ)p(ξ)���π(θ)

p(y|θ)���π(θ)

16



Now, we know that applying an MCMC targeting π̂(θ, ξ|y) then
discarding the output pertaining to ξ corresponds to integrate-out ξ
from the posterior∫

π̂(θ, ξ|y)dξ =
π(θ|y)
p(y|θ)

∫
p̂(y|θ, ξ)p(ξ)dξ︸                 ︷︷                 ︸
E(p̂(y|θ))=p(y|θ)

= π(θ|y)

We are thus performing a pseudo-marginal approach: “marginal”
because we disregard ξ; pseudo because we use p̂(·) not p(·).

Therefore we proved that, using MCMC on an (artificially)
augmented posterior, then discard from the output all the random
variates ξ created during SMC, returns samples from the true
posterior. Exact Bayes!

Notice that discarding the ξ is something that we naturally do in
Metropolis-Hastings hence nothing strange is happening here. The ξ
are just instrumental, uninteresting, variates independent of θ and
independent of {Xt}. 17



Actually...

When I wrote that we obtain samples from the true posterior, that’s
true, but you explore the true posterior only as long as the number of
iterations→∞.

When we run a “small enough” number of iterations, not an infinite
number, it can still happen that we struggle to explore the whole
posterior surface thoroughly.

So the pseudomarginal method is not a silver-bullet. It comes with the
usual problems of MCMC, eg tuning issues and difficulties with
exploring multimodal surfaces.
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Example: SSM with latent SDE

dxt = f (xt; θ)dt + g(xt; θ)dBt, dBt∼iidN(0, dt)

yt = xt + et, et ∼iid N(·, ·)

We consider an Ornstein-Uhlenbeck (OU) process for the latent
dynamics:

dxt = −β(xt − α)dt + σ · dBt,

yt = xt + et, et ∼iid N(0, 0.3162)

where

• α ∈ R is the stationary mean of the process;
• β > 0 is the growth rate;
• σ > 0 diffusion coefficient (intensity of the intrinsic noise).
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OU has known (Gaussian) transition densities, however for our
purposes it is more useful to write how we simulate a path exactly:

xt+∆ = α+ (xt − α)e−β∆ +

√
σ2

2β
(1 − exp(−2β∆))× ξt+∆

with ξt ∼ N(0, 1) iid.
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Simulation setup

dxt = −β(xt − α)dt + σ · dBt,

yt = xt + et, et ∼iid N(0, 0.3162)

• T = 50 observations at equispaced integer times t = 1, 2, ..., T , so
∆ = 1.

• ground-truth parameters: α = 5, β = 20, σ = 1.
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t

0
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2
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4

5

6

X

Y
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Inference setup

For SMC we use the bootstrap filter with N = 50 particles.

Priors: α ∼ U(1, 10), β ∼ InvGamma(3, 50), σ ∼ InvGamma(3, 4).
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Marginal posteriors.
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We obtain the similar inference with N = 500 (instead of N=50) but
faster convergence:
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With N=500:
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The effect of selecting N

What’s the effect of choosing a small or a large number of particles N?

Think about it: the estimated likelihood used a stochastic procedure,
it’s not a deterministic approximation.

p̂(y1:T |θ) from either importance sampling or SMC is a random
variable (variability induced by Monte Carlo).

The smaller the N the larger the variance of p̂(y1:T |θ).

The larger N the more precise the approximation (ie the smaller the
variance is).
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Here I fix the values of α and β to their true values, and instead
consider the equispaced grid for σ ∈ (0.1, 0.2, ..., 10).

I estimate the likelihood via bootstrap filter for each σ value in the
grid, and repeat the estimation independently for 50 times.

I used N=10 particles. Below are loglikelihood values for the
procedure. Recall the true σ = 1.
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Figure 1: N=10

For increasing σ the likelihood has noticeable variability (it’s
logscale!).
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Same but with N=100.
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Figure 2: N=100
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A more dramatic figure for a different model (see
https://tinyurl.com/4h7k3utv)
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The variability of the approximation depends also on θ, not only N.

If the current θ value is implausible, for the given data, the likelihood
approximation gets noisy because many particles end-up in
unimportant regions.

If the likelihood approximation via SMC gets very variable, it can
occur that in Metropolis-Hastings (MH) we occasionally accept an
overestimated likelihood→ goes in the denominator of the MH ratio
→ difficult to accept further proposals→ many rejections→ chain
slowly moving.

Easiest solution: increase the number of particles N but this will
increase the computational effort.
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Plug-and-play strategies

The use of the bootstrap filter into MCMC is sometimes denoted a
“plug-and-play” strategy.

This means you can write a generic code that you can reuse for pretty
much any state-space model without analytic calculations involved.

This is because you only need to define in your code how the states X
advance/propagate from xt to xt+1.

And then we assume we can evaluate p(yt|xt; θ) pointwisely for any of
its arguments.

That’s it! You plug the model equations in your code, and you play.
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Other plug-and-play methods

There exist several other plug-and-play methods. These are all
examples of simulation-based inference methods, in that they are very
generic and only require model simulations to get around the
intractability of the likelihood function.

The R package pomp supports a number of plug-and-play methods:

• particle marginal methods
• iterated filtering
• approximate Bayesian computation (ABC)
• synthetic likelihoods
• ...and more.

Notice pseudomarginal methods, ABC and synthetic likelihoods are
not only working with state-space models! They are very general
methods.
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Conclusions

• We have outlined a powerful methodology for exact Bayesian
inference. Theoretically exact regardless the number of particles
N.

• In practice, a too small N will have a negative impact on chain
mixing→ many rejections, sticky chain.

• the methodology is perfectly suited for state-space modelling.
However it can deal with more general models.
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Downsides when using bootstrap filter

• Recall, in general we wanted to propose particles
xi

t ∼ h(xi
t|x

i
0:t−1, y1:t), i=1,...,N;

• the above (if implemented) allows particles at time t-1 to be able
to “lookahead” to the next datapoint yt;

• the bootstrap filter has xi
t ∼ h(xt|xi

0:t−1, y1:t) ≡ p(xt|xi
t−1). It is

“myopic”;

• if the dimension dim(xt) increases, we might need a very very
large N (computationally intensive);

• There are more intelligent SMC filters. Such as the “auxiliary
particle filter” (Pitt& Shephard), or the use of “bridges” and
“guided proposals” when discretizing an SDE numerically (lots
of work by Moritz Schauer, and also Golightly-Wilkinson).
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Important issues

How to tune the number of particles?

• Doucet, Pitt, and Kohn. Efficient implementation of Markov
chain Monte Carlo when using an unbiased likelihood estimator.
arXiv:1210.1871 (2012).

• Pitt, dos Santos Silva, Giordani and Kohn. On some properties of
Markov chain Monte Carlo simulation methods based on the
particle filter. Journal of Econometrics 171, no. 2 (2012):
134-151.

• Sherlock, Thiery, Roberts and Rosenthal. On the efficiency of
pseudo-marginal random walk Metropolis algorithms.
arXiv:1309.7209 (2013).
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More suggestions for further reading in my blog post:

https://tinyurl.com/4964pesp
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