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I will briefly introduce a methodology that has literally
revolutionised statistical inference for complex models in the last
10-15 years.

For the last 30 years advancements in computer hardware have
enabled modellers to become more and more ambitious.

Complex models are needed to make sense of advanced
experiments and multivariate (large) datasets.

However the advancements of statistical algorithms didn’t proceed at
the same (fast) pace as hardware and modelling advancements.

We wanted to consider realistic model for our data, but often we
could not because of the lack of flexible statistical methods.
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Most real-life modelling is way more complex than examples from courses
textbooks. The likelihood of the object below might be totally out of reach.

[Pic from Schadt et al. (2009) doi:10.1038/nrd2826]
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Say that you have a complex network, with many edges, as in the
previous figure.

You would like to run a Gibbs sampler...however you do not know
how to sample from all the conditionals.

Ok, fear not, you can introduce a Metropolis-Hastings step to sample
from those conditional that are unknown.

...oops, it turns out those conditionals have an unknown density. We
can’t run Metropolis-within-Gibbs!.

More generally we may not know the likelihood function explicitly
or it could be too computationally expensive to approximate.

And suppose the model is not of state-space type, where we would
have ad-hoc trusted methods.
So what do we do?

Umberto Picchini, 7@uPicchini Chalmers University of Technology and University of Gothenburg Sweden



What we typically want is the likelihood function for model
parameters θ:

We have some data: yo.

the likelihood function: p(yo|θ)

We consider data as the outcome of some probabilistic model,
and write yo ∼ p(y|θ = θ0)

θ0 is the unknown ground-truth value of θ that generated the
data.

Main issue

For realistically complex models, the likelihood function is
unavailable in closed form.

Hence exact likelihood based inference is often not possible.
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A paradigm shift is the concept of generative model or simulator.

You code a mathematical model M(θ) as an idealized representation
of the phenomenon under study.

θ∗ →M(θ∗)→ y∗

As long as we are able to run an instance of the model, we
simulate/generate artificial data y∗with y∗ ∼ p(y∗|θ = θ∗).

So we have obtained a random realization y∗ of the generative model
M(θ)

Therefore the simulator M(θ) defines the model pdf p(y|θ)
implicitly!
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Trivial examples of generative models

Example 1: say that you get told that y ∼ N(µ,σ2) but assume you do
not know how to sample from a general Gaussian (just assume...).

However, given knowledge of how to sample u ∼ N(0, 1), then we
also know how to sample from a generic Gaussian.

M : y = µ+ σ× u, u ∼ N(0, 1) independently

then y ∼ N(µ,σ2) with θ = (µ,σ).

So the equation above is a generative model M(θ) for iid Gaussian
draws. We only need some random input (u) and then we can generate
draws.
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Trivial examples of generative models

Example 2: stochastic Ricker model.

M(θ) =

{
(observations): yt ∼indep. Poisson(φNt), t = 1, ..., T
(unobservable process): Nt = r · Nt−1 · e−Nt−1+et , et ∼iid N(0,σ2)

This state-space model can be used to describe the evolution in time of a
population of size Nt. We study this model later.

Even though its likelihood is analytically intractable and given by

p(y1:T |r,φ,σ) =
∫ T∏

t=1

(
p(yt|Nt, r,σ)p(Nt|Nt−1)

)
· dN1 · · · dNT

we can still simulate the yt ∼ p(y|r,φ,σ) from the (unknown) likelihood,
because we can just run a computer model implementing M(θ) at any
θ = (r,Φ,σ).
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We can use simulations from the generative model to produce
inference about θ, without explicit knowledge of the likelihood
p(y|θ).

This is at the basis of likelihood-free methods
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We are entering simulation based inference. Lots of literature
available.

Some interesting discussions in this review (a bit biased towards the
authors’ own research):

One of the possible simulation-based methods is ABC (approximate
Bayesian Computation).
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ABC, approximate Bayesian computation

ABC is probably the most studied likelihood-free methodology.

The first and simplest ABC algorithm is acceptance-rejection sampling.

1 simulate from the prior θ∗ ∼ π(θ)

2 plug θ∗ →M(θ∗)→ y∗

3 if ‖ y∗ − yo ‖< ε accept θ∗ otherwise discard. Go to step 1 and repeat
as many times as needed to obtain N accepted draws.

Each accepted pair (θ∗, y∗) is from the augmented-posterior πε(θ, y∗|yo).

But we do not really care for y∗, so if we retain only accepted θ∗ then

θ∗ ∼ πε(θ|yo)

No likelihood was explicitly involved, only implicitly via simulation!
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Simulated data y∗ inside the blue circle correspond to accepted
parameters θ∗.
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Which posterior are we targeting?

Acceptance-rejection sampling produces draws from the joint
“augmented posterior” πε(θ, y∗|yo) where

πε(θ, y∗|yo) ∝ Iε(y∗, yo)p(y∗|θ∗)π(θ∗)

where Iε(y∗, yo) equals 1 if ‖ y∗ − yo ‖6 ε and 0 otherwise.

However, in reality we do not need to store the y∗ (we can just discard
those immediately after we have evaluated ‖ y∗ − yo ‖6 ε), and then
θ∗ ∼ πε(θ|yo) where

πε(θ|yo) ∝ π(θ∗)

∫
Y

Iε(y∗, yo)p(y∗|θ∗)dy∗
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Say that θ∗ has been accepted by the ABC acceptance-rejection
sampling.
Then:

if ε = 0 then θ∗ ∼ π(θ|yo), the exact posterior

if ε =∞ then θ∗ ∼ π(θ), the prior
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Toy model

Let’s try something really trivial. We show how acceptance-rejection
can easily become inefficient.

The Weibull distribution has two positive parameters, a =“shape” and
b =“scale”.

This is a tractable distribution. We use a tractable case study as it is
pedagogically useful, since we can compare ABC inference with
exact inference.

Its pdf for x > 0 is

f (x) = (a/b)(x/b)a−1 exp(−(x/b)a)

and 0 otherwise.
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Suppose we have n = 5 i.i.d. observations yi ∼ Weibull(2, 5).

Want to estimate parameters of the Weibull, so θ0 = (2, 5) = (a, b)
are the true values.

take ‖ yo − y∗ ‖=
√∑n

i=1(y
o
i − y∗i )2 (you can try a different

distance, this is not really crucial).

We’ll use different thresholds ε.

Run 50,000 iterations of acceptance-rejection.

Notice, in this case we prefix the number of iterations. So we do not
know in advance how many accepted parameters we get. Instead in
the algorithm we previously defined, I wrote that we keep repeating
until a number N of acceptances is obtained.
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Wide priors for the “shape” parameter a ∼ U(0.01, 6) and “scale”
b ∼ U(0.01, 10).

Try ε = 20. True parameter values in red.
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We are evidently sampling from the prior. Must reduce ε. About 92%
draws were accepted. Way too large percentage!
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Reduce ε from ε = 20 to ε = 3
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About 1% of the produced simulations has been accepted.

Of course n = 5 is a very small sample size, so inference quality is
necessarily limited, but you got an idea of the ABC method.

An acceptance rate of about 1% is often implemented in many studies as a
good tradeoff between computational effort and statistical accuracy.
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Curse of dimensionality

results will degrade for a larger sample size n because of a
“necessarily too large” ε;

even for a moderately long dataset yo, how likely is that we
simulate a y∗ such that

∑n
i=1(yi − y∗i )

2 < ε for small ε?
Very unlikely.

inevitably, we’ll be forced to enlarge ε thus degrading the quality
of the inference.

Serious trade-off between computational efficience and statistical
precision.
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Here we take n = 200. To compare with our “best” previous result,
we use ε = 31 (to obtain again a 1% acceptance rate on 50,000
iterations).
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Notice shape is completely off!

The approach is just not going to be of any practical use with large
datasets.
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Break the curse of dimensionality

Compress data information using some summary statistics S(y).

Example: S(y) may contain sample mean, standard deviation,
autocorrelations, quantiles etc.

Idea: instead of comparing yo with y∗, compare S(yo) with S(y∗).

Requirements:

S(·) should be “informative” regarding θ, as we give up on using
the full data y.

S(·) should not be too large. Ideally dim(S) ≡ dim(θ)
[Fearnhed& Prangle ’12].1

1Fearnhead & Prangle (2012). JRSS-B, 74(3), 419-474.
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Acceptance-rejection with summaries (Pritchard et al.2)

1 simulate from the prior θ∗ ∼ π(θ)

2 simulate M(θ∗)→ y∗, compute S(y∗)
3 if ‖ S(y∗) − S(yo) ‖< ε store θ∗. Go to step 1 and repeat as

many times as needed to obtain N accepted draws.

Samples are from πε(θ|S(yo))

with
πε(θ|S(yo)) ∝ π(θ∗)

∫
Y

IAε,yo (y∗)p(y∗|θ∗)dy∗

Aε,yo(y∗) = {y∗ ∈ Y; ‖ S(y∗) − S(yo) ‖< ε}.

2Pritchard et al. 1999, Molecular Biology and Evolution, 16:1791-1798.
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Weibull example, reprise with n = 200

Set S(y) = (sample mean of y, sample SD of y). Set n = 200 observations.
Use ε = 0.35.
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This time we have captured both shape and scale (with 1% acceptance).

Also, enlarging n would not cause problems, thanks to S(·).
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Using summary statistics clearly introduces a further level of approximation.
Except when S(·) is sufficient for θ (carries the same info about θ as the
whole yo).

When S(·) is a set of sufficient statistics for θ,

πε(θ|S(yo)) = πε(θ|yo)

However when the distribution of yo is not in the exponential family, we
basically have no hope to construct sufficient statistics.

For the sake of completeness: we could achieve exact inference under the
rather stringent hypotheses that

1 S is sufficient, and simultaneously that

2 ε = 0

Note, (2) is completely impractical unless y ∈ Y, with Y a discrete set
having few possible values.
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ABC methodology is only apparently simple.

A large amount of research has been produced in the last 20 years to
improve over the basic algorithm.

We will see an example soon, but first...
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For this toy model, exact inference is possible.
Did we obtain an accurate approximation to the exact posterior?
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Exact posteriors (via MCMC) are in red.

ABC has 2 (+1) sources of approximation:

we used arbitrary non-sufficient statistics.

ε > 0

Monte Carlo approximation due to finite samples (but that’s obvious)
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The apparent simplicity of ABC acceptance-rejection should not
promote “lazy science”, just because it can be easily run.

At any time you should strive to use (or search for) the methods that
allow you to implement exact inference.

ABC should be a last-resort if better methods are unavailable, since it
is unknown how much approximate the ABC results will be (you
typically cannot compare with exact inference, unlike with the
previous toy model).
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Beyond ABC rejection

ABC rejection is the simplest example of ABC algorithm.

It generates independent draws and can be coded into an
embarrassingly parallel algorithm. However in can be very
inefficient.

Parameters are proposed from the prior π(θ). A prior does not
exploit the information of already accepted parameters.

Unless π(θ) is similar to the posterior, many proposals will be
rejected for moderately small ε. This worsen with increasing
dimension of θ.

A natural approach is to consider ABC within an MCMC algorithm.

In a MCMC with random walk proposals, the proposed parameter
explores a neighbourhood of the last accepted parameter.
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ABC-MCMC [Marjoram et al. 2003]

Integrating ABC within MCMC is very simple [Marjoram et al.
2003]

Notation: write s∗ ≡ S(y∗), so ≡ S(yo).
and Iε(s∗, so) equals 1 if ||s∗ − so|| < ε, and 0 otherwise.

1 sample proposal θ∗ ∼ q(θ∗|θ#)

2 plug θ∗ →M(θ∗)→ y∗ → s∗

3 compute acceptance ratio:

ratio :=
Iε(s∗, so)π(θ∗)

Iε(s#, so)π(θ#)
× q(θ#|θ∗)

q(θ∗|θ#)

4 simulate u ∼ U(0, 1), accept θ∗ if u < ratio.
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The previous algorithm produces dependent samples from the
“augmented” posterior πε(θ, s∗|so).

This means that if we disregard s∗, and retain only θ∗, we have

θ∗ ∼ πε(θ|so)

This is just another way to sample from an approximated posterior.
Using a more informed proposal function than the prior.
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Example: stochastic Ricker model

{
(observations): yt ∼ Poisson(φNt), t = 1, ..., T
(unobservable process): Nt = r · Nt−1 · e−Nt−1+et , et ∼iid N(0,σ2)

It can be used to describe the evolution in time of a population of size
Nt.

r is the intrinsic growth rate of the population;

φ is a scale parameter

et interpreted as environmental noise.

This is a state-space model, as the dynamics of {Nt} are Markovian
and we assume measurements y1:T to be conditionally independent
given {Nt}.
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the data

We simulated 200 time points from the model, with
log r = 3.8, logφ = 2.3, logσ = −1.2
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Summary statistics

We used the 13 summary statistics suggested in Wood 2010. These
include:

the sample mean of observations ȳ;
number of zeros in the dataset;
autocovariances up to lag 5;
and six more summaries...(not important to be mentioned here,
see the reference above or the provided MATLAB code).

So we have s(yo) = (ȳ, #zeros, autocov lag1, ..., autocov lag5, ...).

Priors:
log r ∼ U(2, 5)
logΦ ∼ U(1.61, 3)
logσ ∼ U(−3,−0.22)
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ABC-MCMC traces

We performed 200,000 ABC-MCMC iterations with decreasing εt.
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ABC-MCMC is in red.
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In blue is inference via “particle MCMC”. No time to talk about this but the
blue one is basically exact inference (up to Monte Carlo error).
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Preliminary conclusions

ABC allows you to produce approximate inference for models
having an intractable/unknown likelihood function.

in our examples we never needed to know the likelihood;

ABC only requires the ability to simulate artificial data, but is
not a silver bullet.

the main difficulty is how to specify summary statistics that are
“informative” for θ.

when summaries are not informative and ε is too large results
will be poor.

tuning ABC is not straightforward. Many available resources
though, see the final slides...
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Other likelihood-free methods

Likelihood-free methods date back to at least Diggle and Gratton
(1984) and Rubin (1984, p. 1160)

More recent examples:

Indirect Inference (Gourieroux and Ronchetti 1993);

for state-space models (Markov processes observed with noise)
the bootstrap filter of Gordon, Salmond and Smith (1993)

Synthetic Likelihoods method of Wood (2010)

Lots of more recent machine learning literature: see this review.
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Are approximations any worth?

Why should we care about approximate methods?

Well, we know the most obvious answer: it’s because this is what we
do when exact methods are impractical. No big news...

But I am more interested in the following phenomenon, which I
noticed by direct experience:

Many scientists seem to get intellectual fulfilment by using exact
methods, leading to exact inference.

What we might not see is when they fail to communicate that
they (consciously or unconsciously) pushed themselves to
formulate simpler models (too simple?!), so that exact
inference could be achieved.
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Gelman and Rubin, 1996

“[...] as emphasized in Rubin (1984), one of the great scientific
advantages of simulation analysis of Bayesian methods is the freedom
it gives the researcher to formulate appropriate models rather than
be overly interested in analytically neat but scientifically
inappropriate models.”
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The ABC methodology is quite mature but still evolving.
Comprehensive 2018 monography (many chapters available on arxiv):

Sisson, Fan, Beaumont. (2018). Handbook of approximate Bayesian
computation. Chapman and Hall/CRC.
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Blog posts and slides (coloured links are clickable)

1 Christian P. Robert often blogs about ABC (and beyond: it’s a
fantastic blog!)

2 an intro to ABC by Darren J. Wilkinson

3 Two blog posts by Rasmus Bååth here and here

4 Tons of slides at Slideshare.
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http://www.sumsar.net/blog/2014/10/tiny-data-and-the-socks-of-karl-broman/
http://www.sumsar.net/blog/2015/07/tiny-data-and-the-socks-of-karl-broman-the-movie/
http://www.slideshare.net/search/slideshow?searchfrom=header&q=approximate+bayesian+computation&ud=any&ft=all&lang=**&sort=


Software (coloured links are clickable)

EasyABC, R package. Research article.

abc, R package. Research article

abctools, R package. Research article. Focusses on tuning.

pyABC, Python package.

ABCpy, Python package.

A list with more options here .

examples with implemented model simulators (useful to
incorporate in your programs).
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http://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12050/abstract
https://cran.r-project.org/web/packages/abc/index.html
http://onlinelibrary.wiley.com/doi/10.1111/j.2041-210X.2011.00179.x/abstract
https://cran.r-project.org/web/packages/abctools/index.html
https://journal.r-project.org/archive/2015-2/nunes-prangle.pdf
https://pyabc.readthedocs.io/en/latest/index.html
https://github.com/eth-cscs/abcpy
https://en.wikipedia.org/wiki/Approximate_Bayesian_computation#Software
https://github.com/dennisprangle/LFexamples


Reviews

Accessible reviews:

1 Sunnåker et al. 2013

2 (with applications in ecology) Hartig et al. 2013

Fairly extensive reviews:

1 Sisson and Fan 2010

2 (with applications in ecology) Beaumont 2010

3 Marin et al. 2010

Review specific for dynamical models:

1 Jasra 2015
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http://onlinelibrary.wiley.com/doi/10.1111/j.1461-0248.2011.01640.x/abstract
http://arxiv.org/abs/1001.2058
http://www.annualreviews.org/doi/abs/10.1146/annurev-ecolsys-102209-144621
http://link.springer.com/article/10.1007/s11222-011-9288-2
http://arxiv.org/abs/1401.0265


Determination of summary statistics

1 review paper by Blum et al. 2013 on dimension reduction
methods for ABC;

2 Fearnhed and Prangle 2012 (a JRSS-B discussion paper).

3 Wiqvist et al. 2019 using deep learning.

Umberto Picchini, 7@uPicchini Chalmers University of Technology and University of Gothenburg Sweden

https://projecteuclid.org/euclid.ss/1369147911
https://doi.org/10.1111/j.1467-9868.2011.01010.x
http://proceedings.mlr.press/v97/wiqvist19a.html

