
MSA101/MVE187 2022 Lecture 11
Missing data / augmented data

Hamiltonian MCMC

Petter Mostad

Chalmers University

October 3, 2022

1 / 19



Review: Bayesian framework

▶ Prediction variable Ypred , data Ydata, parameter θ.

▶ Specify a complete model by specifying prior π(θ), likelihood
π(Ydata | θ), and prediction distribution π(Ypred | θ).

▶ Derive the posterior π(θ | Ydata).

▶ Make predictions using

π(Ypred | Ydata) =

∫
π(Ypred | θ,Ydata)π(θ | Ydata) dθ

(in some cases π(Ypred | θ,Ydata) = π(Ypred | θ)).
▶ If we cannot approximate the integral, we may instead simulate from

π(Ypred , θ | Ydata)

and simply use the part of the simulated vectors that represent Ypred .
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Hierarchical models: examples

▶ Heart transplant example:
▶ Data: Exposures ei and deaths yi at i = 1, . . . , 94 hospitals.

Parameters: Mortality rates λ1, . . . , λ94 at the 94 hospitals.
Underlying parameters µ, α. Prediction: E.g., prob that λ1 < λ2.

▶ Model: yi ∼ Poisson(eiλi ), λi ∼ Gamma(α, α/µ), µ ∝µ 1/µ,
α ∝α 1/α.

▶ Draw the model as a graph!

▶ More examples:
▶ The examples of conjugacy we started the course with
▶ Second assignment!
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Review: A hierarchical example

Data x1, . . . , x8 and y1, . . . , y6 are organized into groups, and we want to
predict a value z1 in a third group. We assume a model

x1, . . . , x8 ∼ Normal(µ1, τ
−1
1 )

y1, . . . , y6 ∼ Normal(µ2, τ
−1
1 )

z1 ∼ Normal(µ3, τ
−1
1 )

µ1, µ2, µ3 ∼ Normal(10, τ−1
0 )

τ0 ∼ Gamma(1, 4)

τ1 ∼ Gamma(7, 3)

▶ Draw the model!

▶ We simulate from the conditional distribution of all unknowns
τ0, τ1, µ1, µ2, µ3, z1 after fixing the data values x1, . . . , x8, y1, . . . , y6.

▶ We then use the simulated values for z1 to make predictions.

▶ For many hierarchical models, Gibbs sampling is a good way to
simulate from the conditional distribution: See next overhead.
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Inference for hierarchical models

▶ The joint density for all variables in a hierarchical model is a product
with one factor for each node in its graph.

▶ To find a function proportional to the posterior density for Ypred , θ
given Ydata, simply fix in this function all values corresponding to the
data Ydata.

▶ To simulate from the resulting posterior density using Gibbs
sampling, the conditional distribution for each unknown variable
given all the others must be found.

▶ A function proportional to each such conditional density can be
found by fixing all the other variables, and removing constant factors.

▶ The resulting functions will only have terms from original factors
corresponding to edges in or out of the variable in the graph!
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Inference for hierarchical models

1. Write down the joint probability of all variables (Ydata,Ypred , and θ)
as a product over all the nodes in the hierarchical model.

2. If possible, try to analytically marginalize over some of the
components of θ.

3. In the expression from (1), fix all values in Ydata, to obtain a
function proportional to the joint posterior Ypred , θ | Ydata. (Remove
constant factors).

4. Generate an (approximate) sample from the remaining variables; the
dimensions corresponding to Ypred represent an approximate sample
for your prediction.

▶ It may be convenient to use a Metropolis Hastings with symmetric
proposals, or:

▶ Many or all of the conditional densities needed for a Gibbs sampler
can often be found easily.

▶ If some conditional densities cannot be found easily, one may for
these use a standard Metropolis Hastings proposal function (and
acceptance probability).
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Review: Conditional distributions for the example

The conditional distributions become (prove yourself!)

µ1 | x1, . . . , x8, τ1, τ0 ∼ Normal

(
10τ0 + 8xτ1
τ0 + 8τ1

,
1

τ0 + 8τ1

)
µ2 | y1, . . . , y6, τ1, τ0 ∼ Normal

(
10τ0 + 6yτ1
τ0 + 6τ1

,
1

τ0 + 6τ1

)
µ3 | z1, τ1, τ0 ∼ Normal

(
10τ0 + z1τ1
τ0 + τ1

,
1

τ0 + τ1

)
τ0 | µ1, µ2, µ3 ∼ Gamma

(
1 +

3

2
, 4 +

1

2

3∑
i=1

(µi − 10)2

)

τ1 | µ1, µ2, µ3, x1 . . . x8, y1 . . . y6, z1 ∼ Gamma

(
7 +

15

2
, 3 +

1

2

8∑
i=1

(xi − µ1)
2

+
1

2

6∑
i=1

(yi − µ2)
2 +

1

2
(z1 − µ3)

2

)
z1 | µ3, τ1 ∼ Normal(µ3, τ

−1
1 )
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Missing data / augmented data

▶ Assume some data values are censored: You don’t know them
exactly, only that they are (for example) above some threshold. How
to deal with this?

▶ Example application: Survival analysis. You want to know how long
people live after some event. But some people are still alive at the
end of the study (or they died from other causes).

▶ We want to learn about density f (· | θ) from sample where x1, . . . , xk
are observed values and c1, . . . , cn are observations that the
corresponding xi is greater than some ai . The likelihood becomes

π(x1, . . . , xk , c1, . . . , cn | θ) =
k∏

i=1

f (xi | θ)
n∏

i=1

(1− F (ai | θ))

where F (· | θ) is the cumulative distribution function.
▶ You may simulate from the posterior for θ using for example random

walk MH.
▶ ALTERNATIVELY: You may add to the model variables representing

the censored values, and simulate these together with the unknown
θ.
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Handling missing data

▶ In many classical statistical methods, missing data may present a
problem.

▶ The standard Bayesian answer in such cases: Add to the model
random variables representing the unobserved values, and simulate
them together with parameters and other variables of interest.

▶ This solves the problem in theory, but may of course sometimes be
difficult in practice.
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Example: Augmented data

▶ Example (7.7. in RC): In a genetics problem, one wants to know how
close two genes are on the chromosome, measured by a parameter θ.
Given n individuals, the number of individuals x1, x2, x3, x4 in each of
4 categories will be multinomially distributed accoring to

(x1, x2, x3, x4) | θ ∼ Multinomial

(
n,

1

2
+

θ

4
,
1

4
(1− θ),

1

4
(1− θ),

θ

4

)
Given a prior on θ, how do you simulate from the posterior?

▶ The likelihood for θ makes necessary approximate or numerical
simulation:

π(x1, . . . , x4 | θ) ∝θ

(
1

2
+

θ

4

)x1 (1

4
(1− θ)

)x2 (1

4
(1− θ)

)x3 (θ

4

)x4

.

▶ We extend the data (x1, x2, x3, x4) with a latent variable z , so that

(z , x1−z , x2, x3, x4) | θ ∼ Multinomial

(
n;

1

2
,
θ

4
,
1

4
(1− θ),

1

4
(1− θ),

θ

4

)
▶ The likelihood becomes

π(z , x1, . . . , x4 | θ) ∝θ θx1−z+x4(1− θ)x2+x3 .
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Example continued

▶ Note that, with the augmented data (z , x1, x2, x3, x4), the likelihood
has the Beta family of densities as conjugate priors! Assume, for
example, θ ∼ Beta(α, β).

▶ You can now use Gibbs sampling to sample from the distribution
π(z , θ | x1, . . . , x4):
▶ θ | z , x1, x2, x3, x4 ∼ Beta(α+ x1 − z + x4, β + x2 + x3).

▶ z | θ, x1, x2, x3, x4 ∼ Binomial
(
x1,

1
2

1
2
+ θ

4

)
.

▶ Exercise: Derive the Binomal distribution for z above.
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Part 2. Using the target density in the proposal

▶ We have looked at several ideas for constructing good proposal
densities. Somehow, they take into account the properties of the
target density.

▶ Can one construct general methods that “automatically” learns
about the target density and makes good proposals based on that?

▶ Several methods exist that do this; they have varying degrees of
success with good convergence.

▶ We will look at one quite popular and clever method: Hamiltonian
Monte Carlo.
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Hamiltonian Monte Carlo: Idea

We are given a posterior density π(q) ∝q exp(−U(q)) for vectors
q = (q1, . . . , qd). We want to find a smart proposal function that utilizes
U:
▶ Look at U(q) as some kind of “potential energy” for a particle that

can move between different q’s.
▶ If the particle moves so that it looses potential energy, it gains

kinetic energy, i.e., it moves faster.
▶ If the particle moves in this way, it will move faster in the direction

of higher density for π(q).
▶ Idea: As a proposal function, randomly generate a direction and a

speed for the particle to move from the current q. Then let the
particle move according to dynamics above for time period s.

▶ Below, we use pairs (p, q) of particle momentum p = (p1, . . . , pd)
and particle position q, moving the particle so that the total energy

H(p, q) = U(q) +
1

2

d∑
i=1

p2i
σ2
i

is kept constant (where we may set σ2
i = m where m is the ”mass”).
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A Metropolis Hastings step using transformations

Assume π(x) is a density and T1,T2 are invertible transformations on the
set of possible x values satisfying for all x

π(T1(x)) = π(x) π(T2(x)) = π(x) T1(T2(x)) = T−1
2 (T−1

1 (x)).

Then the deterministic M-H proposal function T2(T1(x)) has acceptance
probability 1.

▶ Proof: We have symmetry

T2(T1(T2(T1(x)))) = T2(T
−1
2 (T−1

1 (T1(x)))) = x

and invariance of the density

π(T2(T1(x))) = π(T1(x)) = π(x).
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Hamiltonian dynamics

Given a ”Hamiltonian” function H(p, q), with p, q ∈ Rd , H(p, q) ∈ R.
▶ A particle p : R → R2d , with p(t) = (p, q), is said to have

“position” q and “momentum” p at time t.
▶ The particle follows Hamiltonian dynamics if, for i = 1, . . . , d ,

dqi
dt

=
∂H

∂pi
and

dpi
dt

= −∂H

∂qi
. (1)

▶ After time s, the particle starting at position q with momentum p
will have position q∗ and momentum p∗. So the solution to
Equations 1 defines a mapping T1 sending (p, q) to (p∗, q∗).

▶ We have H(T1(p, q)) = H(p, q) because

dH

dt
=

d∑
i=1

(
dqi
dt

∂H

∂qi
+

dpi
dt

∂H

∂pi

)
=

d∑
i=1

(
∂H

∂pi

∂H

∂qi
− ∂H

∂qi

∂H

∂pi

)
= 0.

▶ If H(−p, q) = H(p, q) for all (p, q) then Equations 1 are unchanged
if we simultaneously switch the signs of t and p. Defining
T2(p, q) = (−p, q) we get

T1(T2(p, q)) = T−1
2 T−1

1 (p, q).
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Hamiltonian Monte Carlo

Assume π(p, q) ∝ exp(−H(p, q)) with H(−p, q) = H(p, q) as above.

▶ A Metropolis Hastings algorithm alternating between the proposals
▶ simulate p using π(p | q) ∝ exp(−H(p, q))
▶ compute T2(T1(p, q))

and always accepting will provide an approximate sample from
π(p, q) provided the Markov chain is ergodic.

▶ If H(p, q) = V (p) + U(q) with V (−p) = V (p) then p and q are
independent, and π(p | q) ∝ exp(−V (p)) is simulated independently
in each iteration.

▶ By throwing away the part of the sample concerning p we get an
approximate sample from π(q) ∝ exp(−U(q)).
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Hamiltonian Monte Carlo algorithm

▶ Start with a density π(q) ∝ exp(−U(q)) you want to simulate from.

▶ Define V (p) = 1
2

∑d
i=1 p

2
i /σ

2
i for some σ1, . . . , σd .

▶ Find an initial value q(0) for q.

▶ For each iteration, given q(j):
▶ Simulate pi ∼ Normal(0, σ2

i )
▶ Compute (p∗, q∗) = T1(p, q

(j))
▶ Set q(j+1) = q∗ and throw away p∗.

▶ It ”just” remains to find an efficient way to compute T1(p, q
(j)).

▶ Note that

dqi
dt

=
∂H

∂pi
becomes

dqi
dt

=
pi
σ2
i

and
dpi
dt

= −∂H

∂qi
. becomes

dpi
dt

= −∂U

∂qi
.

17 / 19



The Leapfrog algorithm: A numerical approximation of T1

▶ For simplicity set all σi = 1 and use vector notation: We need that

dq

dt
= p and

dp

dt
= −∇U(q)

▶ Let q0, q1, q2 . . . , qn be the values of q along the particle path at
times 0, s

n1,
s
n2, . . . ,

s
nn = s, respectively.

▶ Let p0, p1, p2, . . . , pn+1 be the values of p along the particle path at
times 0, s

n (1−
1
2 ),

s
n (2−

1
2 ), . . . ,

s
n (n − 1

2 ), s, respectively.
▶ Approximate dq

dt = p with

qj+1 − qj
s/n

= pj+1 j = 0, . . . , n − 1.

▶ Approximate dp
dt = −∇U(q) with

pj+1 − pj
s/n

= −∇U(qi ) j = 1, . . . , n − 1.

while using half stepsize for j = 0 and j = n.
▶ We get p1 = p0 − (s/2n)∇U(q0), pn+1 = pn − (s/2n)∇U(qn), and

qj+1 = qj + (s/n)pj+1

pj+1 = pj − (s/n)∇U(qj) 18 / 19



Hamiltonian MCMC: Summary

▶ Note: n computations of the gradient ∇U must be done: Possible?
Time consuming?

▶ Note: As this is an approximation, we only have that
H(p∗, q∗) ≈ H(p, q). But this is no problem, as we can compute
and use the standard acceptance probability for Metropolis Hastings
proposals.

▶ Note: You must still check that the Markov chain is Ergodic: In
practice, that the algorithm can reach any q from any q.

▶ Can give great fast convergence in the cases where the gradient of
the logged density is easily available and computable.

▶ For more information see for example Neal (2011) “MCMC Using
Hamiltonian Dynamics”.
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