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» Some information theory.

» The EM algorithm.

> A toy example.

» The Baum-Welsh algorithm as an example of EM.
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The information of an event

We assume given a probability mass function 7(x) on a finite set S.
> We want to define the “information” h(U) in an event U C S.
Requirements:
> An event with probability 1 should have zero information.
» The information should increase with decreasing probability 7(U).
> If S =51 X S, and 7(x1, x2) = 7(x1)m(x2) on this set, then we want
h(x1,x2) = h(x1) + h(x2).
> We define h(x) = —log(w(x)) for x € S.
» When using the base 2 logarithm log,, information is measured in
“bits”. We however use the natural logarithm.
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Expected information: Entropy

» Define the entropy H[X] of the discrete random variable X as the
expected information:

HIX] = 3 h()m(x) = — 3 m(x) log(m(x))
» Note: H[X] is always non-negative.

» Example: A uniform distribution on n values has entropy log n. This
is the largest entropy possible for a distribution on n values.

» Shannon's coding theorem: The entropy (using log,) is a lower
bound on the expected number of bits needed to transfer the
information from X.
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(Differential) entropy for continuous distributions

» For any random variable X, its (differential) entropy is defined as

H[X] = E[— log(m(x))] = —/|Og(7f(X))7T(X) dx

X

» H[X] may now be negative.
» Example: Assume X ~ Normal(p, 0?). Then

[ ) e ]

1 1 1 1
= 3 log(270?) + 552 El(x—p)?] = 5 log(270?) + 5

E [ log(7(x))]

» In fact, among all random variables X with E[X] = u and
Var[X] = 02, the normal has the largest entropy.
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Conditional entropy and mutual information

» The conditional entropy is defined as

HIYIX) = [ [ [ 7t 120 t0gtaty 1)) dy} (x) dx

» Show that
H[X, Y] = H[Y|X] + H[X].

» The mutual information is defined as

11X, Y] = // xy)log( ())) dx dy

» Show that
11X, Y] = H[X]+ H[Y] — H[X, Y]
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The Kullback-Leibler divergence (relative entropy)

» For a density p(x) and a positive-valued function g(x) we define

KLipllal = = [ plx) 1og (Zgg) dx

» When g(x) is a density, this is the Kullback-Leibler divergence
from p to g. (But notation is useful even when g is not a density).

» Note that KL[p||q] is generally different from KL[g]|p].

» When g is a density, we always have KL[p||g] > 0 while
KL[p||g] = 0 if and only if p = g.

» The standard proof uses Jensen's inequality.

» Jensen's inequality: If a function 1 is convex, then

P(E[X]) < E[Y(X)].
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The KL divergence

> Note that
KL (m(x, y)lIm(x)7(y)) = 11X, Y]
> Note that
KL{pllg] = Ep [~ log(a(x))] = Hp[X]
where X is a random variable with density p(x).

» EXAMPLE: Assume X ~ Normal(ux,o%) and
Y ~ Normal(py,0%).
Show by direct computation that

1 1 1 1
KL [rx]||my] = 5 |og(27ra$)+2 > +20 (ux—py)? —5 |og(27r0§<)—§.
%

We see how the result is zero when the two distributions are
identical.
We see how KL [rx||my] # KL [ry||7x] in general.
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Start of part 2: Maximum posterior (MAP)

» The Maximal APosteriori (MAP): The value 0 that maximizes the
posterior m(6 | data).

» When the prior is flat, 7(6) o 1, this corresponds to finding the
maximum likelihood (ML) estimate for 6.

» Recall the advantages and disadvantages of using a single estimate
instead of the full posterior.

» The MAP should be easy to compute when 6 consists of all
unknown variables: Just differentiate log(7(0 | data)), i.e.
differentiate log(7(data | 8)7(0)).

» Much harder if the model also contains other unknown variables Z:
Then 7(60 | data) is the marginal of 7(6, Z | data) and much harder
to maximize.

» The Expectation-Maximization (EM) algorithm comes to the
rescue...
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The EM algorithm

> We want to find the § maximizing the posterior m(6 | x); i.e.,
maximizing

log (7 (x | #)m(6)) = log(m(x | 0)) + log(w(6))

» Assume we have a joint model 7(x, z | 8) which includes augmented
data z, and consider the marginal 7,(z | x,0). We may then write,
for any density g(z),

log(m(x | 0)) + log(m(0)) = KL(ql|7z) + L(q,0) + log(w(0)) (1)

£(0.0) = [ a(2)og (W) dz

KL(ql|rz) = —/q(Z) log <7TZ(Z(|ZX)’9)) dz

where

and
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The EM algorithm, cont.

[ 4
>

Fix g(z) = m,(z | x,0°) for some value 6°.

With this g(z), KL(g||7,) will be zero when 6 = 6°¢ and positive
for other 0's. THUS: If we find 8" maximizing £(q, ) + log(n(6)),
so that £(q,0™") + log(7(8"")) > L(q,0°) + log(m(6°)),
replacing 6°/¢ with 07" will increase the right side of Equation 1,
and thus also the left side.

Set 6° to the value #™" and start again from the first step above.
Continue until convergence.

Note that maximizing £(gq, ) + log(w(6)) is the same as maximizing

[ at)iog (a2 6)) oz + og(x )
where the left term is the expected full loglikelihood, taking the

expectation over the density q(z) = 7,(z | x, 0°9).

E-step: Computing the expectation above. M-step: Maximizing.
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The EM algorithm, summary

A model with parameters 6, data x, and augmented variables z is
specified using 7(6) and 7 (x,z | ). Write 7,(z | x, ) for conditional
density for z.

Find 6 maximizing 7(0 | x) g 7(x | )7 () as follows: Start with some
9©)  and iteratively compute 87" from 0° as follows:

» E-step: Compute as a function of 6
E. o [log m(x, z | 0)]

where you take the expectation over ,(z | x,0°).

> M-step: Maximize the sum of this function of 6 and log(7(6)) to
find 97,
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A toy example

We have data xi, ..., x,, where we assume the following model, with a
single parameter u: With probability 0.5, x; ~ Normal(0, 1) and with
probability 0.5, x; ~ Normal(yu, 1). We assume a flat prior on p.

» The likelihood can be written as

n
(X1, oy Xn | 1) = H (0.5 - Normal(x;; 0,1) 4+ 0.5 - Normal(x;; i1, 1))

i=1

» We now introduce augmented data zi, ..., z,, where each z; has
value 0 or 1, so that z; ~ Bernoulli(0.5) and x; | z; ~ Normal(uz;,1).
The full joint density may be written as

n n
(X1, e vy Xny ZLy + -« y Zny 1) X H w(xi | zi, 1) = H Normal(x;; piz;, 1)
i=1 i=1

» One way to use this model is for finding the 1 maximizing the
posterior using the EM-algorithm.
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A toy example: Using the EM algorithm

» First, find the complete data logposterior (which in our case is the
same as the loglikelihood). It is (up to a constant)

n

1
log (X1, vy Xny Z1y - -+ Zn | 1)) = Z —E(X,' — uz)?

i=1

» Then, for a fixed value = 1, find the distribution z; | x;, u°":

T(Xts oy Xny oo Zjy - | 1) oc,, Normal(xj; 9z, 1)

Normalizing the probabilities for the two values z; = 0 and z; = 1:

zi | x;, u®®  ~  Bernoulli(p;), where

Normal(x;; u°, 1)
Normal(x;; 0, 1) + Normal(x;; o', 1)

pi =

> E step: Compute E, |, ou[log7(x,z | p1)]. M step: Set ™" as the
parameter maximizing this function.
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A toy example continued

» The E step becomes

3

l\.)\»—l

E,jpoullogm(x,z | u)] = E,j o0 [ —Ziu ]
i=1

Zluold [ Z — 2x;zip + zi2ﬂ2

- 2 ZX? — 2x; o[zl + E o [27] 17

1 n
= 3 lez — 2xpift + pipi?
» The M step becomes
a n n
o E, o log m(x, z | p)] —72( 2x; pi+2pift) Zx,-p,-—,uZp,-.
i=1 i=1

Setting this to zero results in " = (37, xipi) / (X1 pi).
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Example: Applying EM to an HMM

We consider an HMM where all the x; have a finite state spaces

® ®© ® - ©
CO— (D= - ()

but where some of the parameters of the distributions 7(Xp),

m(X; | Xi—1), and 7(Y; | X;) are unknown. Objective: Given fixed values
for the y;, find maximum likelihood estimates for the parameters in the
model.

» Note: If assuming flat priors the problem becomes that of computing
the parameters maximizing the posterior, i.e., finding the MAP.

» Idea: Use the EM algorithm, with the values of the x; as the
augmented data.

» The E step of the EM algorithm is computed using the
Forward-Backward algorithm (see below).
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Example: Applying EM to an HMM

For simplicity we assume each X; can have values 1,..., M. As a first try, we
assume all HMM parameters are unknown:

0=(q,p)=((q1,-..,qm), (P11, - ., Pmm))

be the parameters we want to estimate, where

q = Pr(X =)
px = Pr(Xi=k|Xi-1=))

The full loglikelihood given 6 becomes
lOg(ﬂ-(XOV"7XT7y07"'7yT | 9))

= log <7r(xo | 0) HTI‘(X,‘ | X;,1,0)H7r(y,- | X,'))

i1 i=0
T T
= logm(xo | 0)+ Z log 7(xi | xi—1,0) + Z log 7(yi | xi)
=1 i=0
M T M M
= C+> I(xo=Jj)loggi+Y_ > > I(xi-1=j)I(xi = k) log pi
=1 =1 j=1 k=1
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Example: Applying EM to an HMM

» In the E step, we would like to compute the expectation of the full
loglikelihood under the distribution 7(xp, ..., xT | Yo, - -, yT,0°9)
for some set of parameters §°.

» Thus we need to compute the expectations E[/(xo = j)] and
E[/(xi—1 = j)I(x; = k)] under this distribution.

» Fixing 0°, we can use the Forward-Backward algorithm (see next

overhead) to compute the densities 7(x; | yo,...,¥;) and
w(Yit1,---,¥7 | Xi). Further we have that
(X, Xit1 | Yo, -5 YT)
o T(Yig1s - YT | Xiy Xip1)m(Xi, Xig1 | Yo, -5 i)
X (Yig2, - YT | Xig1)T(Vigr | Xig1)T(Xiga | Xi)7(xi | yo, -+, ¥i)

making it possible to compute the joint posterior for x; and x;;1
from these densities.
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The Forward-Backward algorithm
.“
CO— (D= - ()

Objective: Compute the marginal posterior distribution of every x; given data
Yo, -, yr: Use m(xi | yo ..., y1) o T(Vig1,s -, y7 | Xi)w(xi | yo,...,yi) and
1. Forward: For i =0,..., T compute 7(x; | yo,...,Yi) using
m(xi [ yo,..,¥i) X 7wy | xi)m(xi|yo,. .., yi-1)
m(yi | Xi)/TF(Xi | xi—1)m(xi—1 | Yo,- .-, ¥i—1) dxi—1

1,...,0 compute 7(yit1,...,y7 | Xi) using

2. Backward: Fori =T
Rt ooy 1) = [ wens oo yr D)l [ ) | ) din
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Example: Applying EM to an HMM

The algorithm can now be summed up as
» Choose starting parameters §°/9.

» Run the Forward-Backward algorithm on the Markov model with
parameters 6° to compute the numbers E [/(xg = j)] and
E[l(xi—1 = j)I(x; = k)].

» Find the 6§ maximizing the expected loglikelihood

T M M
ZE[/(X0 =llogqi+> > Y E[l(xi-1 = j)I(xi = k)] log pjx
i=1 j=1 k=1
In fact, we get
ST E[ (i1 = j)I(xi = K)]
Sy S E (61 = )1 (% = K)]

> Set 0°9 = ((G1,...,8m), (P11, ---,Pmm)) and iterate until
convergence.

G =E[l(xo=Jj)] and p =
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Some results from an implementation

» |f the observations 7(y; | x;) are noisy, the data is not very large, and
0 consists of all g; and pj, the likelihood function seems to have
multiple modes. So EM does not work well.

» In such cases, MH simulation seems to confirm that the posterior is
not very concentrated for specific parameters.

» However, if we have smaller amounts of noise, very much data, or
restrict 6 so that we only allow transition matrices from a parametric
family, the EM should work well....
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