MSA101/MVE187 2021 Lecture 12 Some Information Theory The EM algorithm

Petter Mostad

Chalmers University

October 5, 2022

Overview

- Some information theory.
- ► The EM algorithm.
- A toy example.
- ▶ The Baum-Welsh algorithm as an example of EM.

The information of an event

We assume given a probability mass function $\pi(x)$ on a finite set S.

- ▶ We want to define the "information" h(U) in an event $U \subseteq S$. Requirements:
 - ▶ An event with probability 1 should have zero information.
 - ▶ The information should increase with decreasing probability $\pi(U)$.
 - ▶ If $S = S_1 \times S_2$ and $\pi(x_1, x_2) = \pi(x_1)\pi(x_2)$ on this set, then we want $h(x_1, x_2) = h(x_1) + h(x_2)$.
- ▶ We define $h(x) = -\log(\pi(x))$ for $x \in S$.
- ▶ When using the base 2 logarithm log₂, information is measured in "bits". We however use the natural logarithm.

Expected information: Entropy

▶ Define the entropy H[X] of the discrete random variable X as the expected information:

$$H[X] = \sum_{x} h(x)\pi(x) = -\sum_{x} \pi(x)\log(\pi(x))$$

- Note: H[X] is always non-negative.
- Example: A uniform distribution on n values has entropy $\log n$. This is the largest entropy possible for a distribution on n values.
- ▶ Shannon's coding theorem: The entropy (using log₂) is a lower bound on the expected number of bits needed to transfer the information from X.

(Differential) entropy for continuous distributions

ightharpoonup For any random variable X, its (differential) entropy is defined as

$$H[X] = E\left[-\log(\pi(x))\right] = -\int_X \log(\pi(x))\pi(x) dx$$

- ► H[X] may now be negative.
- **Example:** Assume $X \sim \text{Normal}(\mu, \sigma^2)$. Then

$$E[-\log(\pi(x))] = E\left[-\log\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) + \frac{1}{2\sigma^2}(x-\mu)^2\right]$$
$$= \frac{1}{2}\log(2\pi\sigma^2) + \frac{1}{2\sigma^2}E[(x-\mu)^2] = \frac{1}{2}\log(2\pi\sigma^2) + \frac{1}{2}.$$

▶ In fact, among all random variables X with $E[X] = \mu$ and $Var[X] = \sigma^2$, the normal has the largest entropy.

Conditional entropy and mutual information

▶ The conditional entropy is defined as

$$H[Y|X] = \int \left[\int \pi(y \mid x) (-\log(\pi(y \mid x))) \, dy \right] \, \pi(x) \, dx$$

Show that

$$H[X, Y] = H[Y|X] + H[X].$$

▶ The mutual information is defined as

$$I[X,Y] = -\int \int \pi(x,y) \log \left(\frac{\pi(x)\pi(y)}{\pi(x,y)}\right) dx dy$$

Show that

$$I[X, Y] = H[X] + H[Y] - H[X, Y]$$

The Kullback-Leibler divergence (relative entropy)

For a density p(x) and a positive-valued function q(x) we define

$$\mathsf{KL}[p||q] = -\int p(x) \log \left(\frac{q(x)}{p(x)}\right) dx$$

- When q(x) is a density, this is the **Kullback-Leibler** divergence from p to q. (But notation is useful even when q is not a density).
- Note that KL[p||q] is generally different from KL[q||p].
- When q is a density, we always have $KL[p||q] \ge 0$ while KL[p||q] = 0 if and only if p = q.
- ▶ The standard proof uses *Jensen's inequality*.
- ▶ Jensen's inequality: If a function ψ is *convex*, then $\psi(\mathsf{E}[X]) \leq \mathsf{E}[\psi(X)]$.

The KL divergence

Note that

$$\mathsf{KL}\left(\pi(x,y)||\pi(x)\pi(y)\right) = I[X,Y]$$

Note that

$$\mathsf{KL}[\rho||q] = \mathsf{E}_{\rho}\left[-\log(q(x))\right] - H_{\rho}[X]$$

where X is a random variable with density p(x).

► EXAMPLE: Assume $X \sim \text{Normal}(\mu_X, \sigma_X^2)$ and $Y \sim \text{Normal}(\mu_Y, \sigma_Y^2)$. Show by direct computation that

$$\mathsf{KL}\left[\pi_X || \pi_Y\right] = \frac{1}{2} \log(2\pi\sigma_Y^2) + \frac{\sigma_X^2}{2\sigma_Y^2} + \frac{1}{2\sigma_Y^2} (\mu_X - \mu_Y)^2 - \frac{1}{2} \log(2\pi\sigma_X^2) - \frac{1}{2}.$$

We see how the result is zero when the two distributions are identical.

We see how $KL[\pi_X||\pi_Y] \neq KL[\pi_Y||\pi_X]$ in general.

Start of part 2: Maximum posterior (MAP)

- The Maximal APosteriori (MAP): The value $\hat{\theta}$ that maximizes the posterior $\pi(\theta \mid \text{data})$.
- When the prior is flat, $\pi(\theta) \propto 1$, this corresponds to finding the maximum likelihood (ML) estimate for θ .
- Recall the advantages and disadvantages of using a single estimate instead of the full posterior.
- ► The MAP should be easy to compute when θ consists of all unknown variables: Just differentiate $\log(\pi(\theta \mid data))$, i.e. differentiate $\log(\pi(data \mid \theta)\pi(\theta))$.
- Much harder if the model also contains other unknown variables Z: Then $\pi(\theta \mid \text{data})$ is the marginal of $\pi(\theta, Z \mid \text{data})$ and much harder to maximize.
- ▶ The Expectation-Maximization (EM) algorithm comes to the rescue...

The EM algorithm

We want to find the θ maximizing the posterior $\pi(\theta \mid x)$; i.e., maximizing

$$\log (\pi(x \mid \theta)\pi(\theta)) = \log(\pi(x \mid \theta)) + \log(\pi(\theta))$$

Assume we have a joint model $\pi(x, z \mid \theta)$ which includes augmented data z, and consider the marginal $\pi_z(z \mid x, \theta)$. We may then write, for any density q(z),

$$\log(\pi(x \mid \theta)) + \log(\pi(\theta)) = \mathsf{KL}(q \mid |\pi_z) + \mathcal{L}(q, \theta) + \log(\pi(\theta)) \quad (1)$$

where

$$\mathcal{L}(q, \theta) = \int q(z) \log \left(\frac{\pi(x, z \mid \theta)}{q(z)} \right) dz$$

and

$$\mathsf{KL}(q||\pi_z) = -\int q(z) \log \left(\frac{\pi_z(z\mid x, \theta)}{q(z)} \right) \, dz$$

The EM algorithm, cont.

- Fix $q(z) = \pi_z(z \mid x, \theta^{old})$ for some value θ^{old} .
- With this q(z), $\mathrm{KL}(q||\pi_z)$ will be zero when $\theta=\theta^{old}$ and positive for other θ 's. THUS: If we find θ^{new} maximizing $\mathcal{L}(q,\theta)+\log(\pi(\theta))$, so that $\mathcal{L}(q,\theta^{new})+\log(\pi(\theta^{new}))>\mathcal{L}(q,\theta^{old})+\log(\pi(\theta^{old}))$, replacing θ^{old} with θ^{new} will increase the right side of Equation 1, and thus also the left side.
- ▶ Set θ^{old} to the value θ^{new} and start again from the first step above. Continue until convergence.
- Note that maximizing $\mathcal{L}(q,\theta) + \log(\pi(\theta))$ is the same as maximizing

$$\int q(z) \log (\pi(x,z \mid \theta)) dz + \log(\pi(\theta))$$

where the left term is the expected full loglikelihood, taking the expectation over the density $q(z) = \pi_z(z \mid x, \theta^{old})$.

E-step: Computing the expectation above. M-step: Maximizing.

The EM algorithm, summary

A model with parameters θ , data x, and augmented variables z is specified using $\pi(\theta)$ and $\pi(x,z\mid\theta)$. Write $\pi_z(z\mid x,\theta)$ for conditional density for z.

Find θ maximizing $\pi(\theta \mid x) \propto_{\theta} \pi(x \mid \theta)\pi(\theta)$ as follows: Start with some $\theta^{(0)}$, and iteratively compute θ^{new} from θ^{old} as follows:

E-step: Compute as a function of θ

$$\mathsf{E}_{z\mid\theta^{old}}\left[\log\pi(x,z\mid\theta)\right]$$

where you take the expectation over $\pi_z(z \mid x, \theta^{old})$.

▶ **M-step**: Maximize the sum of this function of θ and log $(\pi(\theta))$ to find θ^{new} .

A toy example

We have data x_1, \ldots, x_n , where we assume the following model, with a single parameter μ : With probability 0.5, $x_i \sim \text{Normal}(0,1)$ and with probability 0.5, $x_i \sim \text{Normal}(\mu,1)$. We assume a flat prior on μ .

► The likelihood can be written as

$$\pi(x_1, \dots, x_n \mid \mu) = \prod_{i=1}^n (0.5 \cdot \mathsf{Normal}(x_i; 0, 1) + 0.5 \cdot \mathsf{Normal}(x_i; \mu, 1))$$

We now introduce augmented data z_1, \ldots, z_n , where each z_i has value 0 or 1, so that $z_i \sim \text{Bernoulli}(0.5)$ and $x_i \mid z_i \sim \text{Normal}(\mu z_i, 1)$. The full joint density may be written as

$$\pi(x_1,\ldots,x_n,z_1,\ldots,z_n,\mu) \propto \prod_{i=1}^n \pi(x_i\mid z_i,\mu) = \prod_{i=1}^n \mathsf{Normal}(x_i;\mu z_i,1)$$

• One way to use this model is for finding the μ maximizing the posterior using the EM-algorithm.

A toy example: Using the EM algorithm

► First, find the complete data logposterior (which in our case is the same as the loglikelihood). It is (up to a constant)

$$\log \pi(x_1, \ldots, x_n, z_1, \ldots, z_n \mid \mu)) = \sum_{i=1}^n -\frac{1}{2}(x_i - \mu z_i)^2$$

▶ Then, for a fixed value $\mu = \mu^{old}$, find the distribution $z_i \mid x_i, \mu^{old}$:

$$\pi(x_1,\ldots,x_n,\ldots z_i,\cdots \mid \mu^{old}) \propto_{z_i} \mathsf{Normal}(x_i;\mu^{old}z_i,1)$$

Normalizing the probabilities for the two values $z_i = 0$ and $z_i = 1$:

$$z_i \mid x_i, \mu^{old} \sim \text{Bernoulli}(p_i), \text{ where}$$

$$p_i = \frac{\text{Normal}(x_i; \mu^{old}, 1)}{\text{Normal}(x_i; 0, 1) + \text{Normal}(x_i; \mu^{old}, 1)}$$

▶ E step: Compute $\mathsf{E}_{z\mid\mu^{old}}[\log\pi(x,z\mid\mu)]$. M step: Set μ^{new} as the parameter maximizing this function.

A toy example continued

► The E step becomes

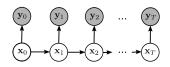
$$\begin{split} \mathsf{E}_{z|\mu^{old}} [\log \pi(x,z\mid\mu)] &= \mathsf{E}_{z|\mu^{old}} \left[\sum_{i=1}^{n} -\frac{1}{2} (x_{i} - z_{i}\mu)^{2} \right] \\ &= \mathsf{E}_{z|\mu^{old}} \left[-\frac{1}{2} \sum_{i=1}^{n} x_{i}^{2} - 2x_{i}z_{i}\mu + z_{i}^{2}\mu^{2} \right] \\ &= -\frac{1}{2} \sum_{i=1}^{n} x_{i}^{2} - 2x_{i} \mathsf{E}_{z|\mu^{old}} [z_{i}]\mu + \mathsf{E}_{z|\mu^{old}} [z_{i}^{2}]\mu^{2} \\ &= -\frac{1}{2} \sum_{i=1}^{n} x_{i}^{2} - 2x_{i}p_{i}\mu + p_{i}\mu^{2} \end{split}$$

► The M step becomes

$$\frac{\partial}{\partial \mu} \mathsf{E}_{\mathsf{z}\mid \mu^{old}}[\log \pi(\mathsf{x}, \mathsf{z}\mid \mu)] = -\frac{1}{2} \sum_{i=1}^{n} (-2\mathsf{x}_{i}\mathsf{p}_{i} + 2\mathsf{p}_{i}\mu) = \sum_{i=1}^{n} \mathsf{x}_{i}\mathsf{p}_{i} - \mu \sum_{i=1}^{n} \mathsf{p}_{i}.$$

Setting this to zero results in $\mu^{new} = \left(\sum_{i=1}^n x_i p_i\right) / \left(\sum_{i=1}^n p_i\right)$.

We consider an HMM where all the x_i have a finite state spaces



but where some of the parameters of the distributions $\pi(X_0)$, $\pi(X_i \mid X_{i-1})$, and $\pi(Y_i \mid X_i)$ are unknown. Objective: Given fixed values for the y_i , find maximum likelihood estimates for the parameters in the model.

- Note: If assuming flat priors the problem becomes that of computing the parameters maximizing the posterior, i.e., finding the MAP.
- ▶ Idea: Use the EM algorithm, with the values of the x_i as the augmented data.
- ► The E step of the EM algorithm is computed using the Forward-Backward algorithm (see below).

For simplicity we assume each X_i can have values 1, ..., M. As a first try, we assume all HMM parameters are unknown:

$$\theta = (q, p) = ((q_1, \dots, q_M), (p_{11}, \dots, p_{MM}))$$

be the parameters we want to estimate, where

$$q_j = \Pr(X_0 = j)$$

 $p_{jk} = \Pr(X_i = k \mid X_{i-1} = j)$

The full loglikelihood given θ becomes

$$\begin{aligned} &\log\left(\pi(x_{0},\ldots,x_{T},y_{0},\ldots,y_{T}\mid\theta)\right) \\ &= &\log\left(\pi(x_{0}\mid\theta)\prod_{i=1}^{T}\pi(x_{i}\mid x_{i-1},\theta)\prod_{i=0}^{T}\pi(y_{i}\mid x_{i})\right) \\ &= &\log\pi(x_{0}\mid\theta) + \sum_{i=1}^{T}\log\pi(x_{i}\mid x_{i-1},\theta) + \sum_{i=0}^{T}\log\pi(y_{i}\mid x_{i}) \\ &= &C + \sum_{i=1}^{M}I(x_{0}=j)\log q_{j} + \sum_{i=1}^{T}\sum_{i=1}^{M}\sum_{k=1}^{M}I(x_{i-1}=j)I(x_{i}=k)\log p_{jk} \end{aligned}$$

- In the E step, we would like to compute the expectation of the full loglikelihood under the distribution $\pi(x_0, \ldots, x_T \mid y_0, \ldots, y_T, \theta^{old})$ for some set of parameters θ^{old} .
- Thus we need to compute the expectations $E[I(x_0 = j)]$ and $E[I(x_{i-1} = j)I(x_i = k)]$ under this distribution.
- Fixing θ^{old} , we can use the Forward-Backward algorithm (see next overhead) to compute the densities $\pi(x_i \mid y_0, \dots, y_i)$ and $\pi(y_{i+1}, \dots, y_T \mid x_i)$. Further we have that

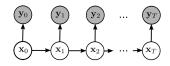
$$\pi(x_{i}, x_{i+1} \mid y_{0}, \dots, y_{T})$$

$$\propto \pi(y_{i+1}, \dots, y_{T} \mid x_{i}, x_{i+1}) \pi(x_{i}, x_{i+1} \mid y_{0}, \dots, y_{i})$$

$$\propto \pi(y_{i+2}, \dots, y_{T} \mid x_{i+1}) \pi(y_{i+1} \mid x_{i+1}) \pi(x_{i+1} \mid x_{i}) \pi(x_{i} \mid y_{0}, \dots, y_{i})$$

making it possible to compute the joint posterior for x_i and x_{i+1} from these densities.

The Forward-Backward algorithm



Objective: Compute the marginal posterior distribution of every x_i given data y_0, \ldots, y_T : Use $\pi(x_i \mid y_0 \ldots, y_T) \propto_{x_i} \pi(y_{i+1}, \ldots, y_T \mid x_i) \pi(x_i \mid y_0, \ldots, y_i)$ and

1. Forward: For i = 0, ..., T compute $\pi(x_i \mid y_0, ..., y_i)$ using

$$\pi(x_i \mid y_0, \dots, y_i) \quad \propto_{x_i} \quad \pi(y_i \mid x_i) \pi(x_i \mid y_0, \dots, y_{i-1})$$

$$= \quad \pi(y_i \mid x_i) \int \pi(x_i \mid x_{i-1}) \pi(x_{i-1} \mid y_0, \dots, y_{i-1}) dx_{i-1}$$

2. Backward: For i = T - 1, ..., 0 compute $\pi(y_{i+1}, ..., y_T \mid x_i)$ using

$$\pi(y_{i+1},\ldots,y_T\mid x_i) = \int \pi(y_{i+2},\ldots,y_T\mid x_{i+1})\pi(y_{i+1}\mid x_{i+1})\pi(x_{i+1}\mid x_i)\,dx_{i+1}$$

The algorithm can now be summed up as

- ▶ Choose starting parameters θ^{old} .
- ▶ Run the Forward-Backward algorithm on the Markov model with parameters θ^{old} to compute the numbers $E[I(x_0 = j)]$ and $E[I(x_{i-1} = j)I(x_i = k)]$.
- ightharpoonup Find the heta maximizing the expected loglikelihood

$$\sum_{j=1}^{M} E[I(x_0 = j)] \log q_j + \sum_{i=1}^{T} \sum_{j=1}^{M} \sum_{k=1}^{M} E[I(x_{i-1} = j)I(x_i = k)] \log p_{jk}$$

In fact, we get

$$\hat{q}_{j} = E[I(x_{0} = j)] \text{ and } \hat{p}_{jk} = \frac{\sum_{i=1}^{T} E[I(x_{i-1} = j)I(x_{i} = k)]}{\sum_{k=1}^{M} \sum_{i=1}^{T} E[I(x_{i-1} = j)I(x_{i} = k)]}$$

▶ Set $\theta^{old} = ((\hat{q}_1, \dots, \hat{q}_M), (\hat{p}_{11}, \dots, \hat{p}_{MM}))$ and iterate until convergence.

Some results from an implementation

- If the observations $\pi(y_i \mid x_i)$ are noisy, the data is not very large, and θ consists of all q_j and p_{jk} , the likelihood function seems to have multiple modes. So EM does not work well.
- ▶ In such cases, MH simulation seems to confirm that the posterior is not very concentrated for specific parameters.
- Nowever, if we have smaller amounts of noise, very much data, or restrict θ so that we only allow transition matrices from a parametric family, the EM should work well....