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Review / overview

▶ Last time: The EM algorithm: Using Kullback-Leibler divergence to
find a maximal posterior estimate.

▶ This time, part 1: Variational Bayes: Using Kullback-Leibler
divergence to find a density from some family of densities that
optimally fits the posterior.

▶ Part 2: The slice sampler.

▶ If time: Final comments about MCMC.
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The KL notation

▶ Recall:

KL[q||p] = Eq

[
− log

p(z)

q(z)

]
= −

∫
q(z) log

p(z)

q(z)
dz

for any density q(z) and any positive function p(z) so that the
integral exists. (For standard KL p must be a density).

▶ Consequence: If p2(z) = Cp1(z) then for any q

KL[q||p2] = Eq

[
− log

Cp1(z)

q(z)

]
= − logC + KL[q||p1].

▶ For example, if
∫
p2(z) dz = C then for any q

KL[q||p2] ≥ − logC

because KL[q||p2/C ] ≥ 0, with minimum occurring when q ∝z p2.
▶ Recall also that

KL[q||p] = Eq[− log p(z)]− Hq[Z ]

where Hq[Z ] is the entropy of a random variable Z with density q .
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Example 1: The EM algorithm

▶ Consider the identity

π(x , z | θ) = π(x | θ)πz(z | x , θ).

Considering this as a function of z , π(x | θ) is a constant.

▶ For any density q for z we get

KL[q||π(x , · | θ)] = − log π(x | θ) + KL[q||πz(· | x , θ)]

▶ The above equation is in the core of the proof of the EM algorithm:
▶ Set q(z) = πz(z | x , θOLD) for some θOLD .
▶ Find a θNEW that minimizes the left-hand side.
▶ Then, moving from θOLD to θNEW , the left-hand side will decrease,

and KL(q||πz(· | x , θ)] will increase. Thus − log π(x | θ) will
decrease.
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Example 2: Approximating the posterior

Let’s say we want to find a density q minimizing KL[q||π(· | data)]
▶ In the identity

π(data, θ) = π(θ | data)π(data)

π(data) is a constant as a function of θ.

▶ Thus for a density q for θ,

KL[q||π(data, ·)] = − log π(data) + KL[q||π(· | data)].

▶ We may try to find a q minimizing KL[q||π(· | data)] by finding a q
minimizing KL[q||π(data, ·)]: This is part of the Variational Bayes
idea.
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Approximations using Variational Bayes

▶ Idea: Finding an approximation to the posterior π(θ | data) in some
family of densities Q that does not necessarily contain the posterior.

▶ More specifically find the q ∈ Q minimizing the Kullback Leibler
divergence from q to the posterior.

▶ Writing as above

KL[q||π(data, ·)] = − log π(data) + KL[q||π(· | data)].

we instead find the q̂ minimizing KL[q||π(data, ·)].
▶ As log π(data) ≥ −KL[q||π(data, ·)] the value −KL[q̂||π(data, ·)] is

called the evidence lower bound, or ELBO.

▶ Thus we want to maximize

L(q) = −KL[q||π(data, ·)] =
∫

q(θ) log
π(data, θ)

q(θ)
dθ

= Eq[log π(data, θ)] + Hq[θ]

where Hq[θ] is the entropy of a variable θ with density q.
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Splitting θ into components (or subvectors)

▶ Let Qprod be the family of densities q that can be written as products

q(θ) =
n∏

i=1

qi (θi )

where θ = (θ1, θ2, . . . , θn) is split into (groups of) dimensions.
▶ For the entropy term we get that

Hq[θ] =
n∑

i=1

Hqi [θi ]

where θi are variables with densities qi .
▶ For any i ∈ 1, . . . , n the first term of L(q) may be rewritten

Eq[log π(data, θ)] = Eqi

[
Eqj ,j ̸=i [log π(data, θ)]

]
▶ So if we fix all qj with j ̸= i , the optimal qi maximizing L(q) is the

qi maximizing

Eqi

[
Eqj ,j ̸=i [log π(data, θ)]

]
+ Hqi [θi ]

= −KL
[
qi || exp

(
Eqj ,j ̸=i [log π(data, ·)]

)]
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First option: Solving simultaneous equations

▶ We have seen that KL
[
qi || exp

(
Eqj ,j ̸=i [log π(data, ·)]

)]
is minimized

when
qi (θi ) ∝θi exp

(
Eqj ,j ̸=i [log π(data, ·)]

)
▶ If we write out these n equations for i = 1, . . . , n, they become n

equations in the n unknowns q1, q2, . . . , qn.

▶ Sometimes it is possible to simultaneously solve these equations.

▶ The solution we get is then the density q ∈ Qprod that minimizes
KL[q||π(data, ·)].
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Variational Bayes: Toy example

▶ Consider the following example:

y1, . . . , yn ∼ Normal(µ, τ−1)

π(µ) ∝ 1

π(τ) ∝ 1/τ

▶ Using conjugacy, we get that the exact posterior is given by

τ | y1, . . . , yn ∼ Gamma

(
n − 1

2
,
n − 1

2
s2
)

µ | τ, y1, . . . , yn ∼ Normal
(
y , (nτ)−1

)
where s2 is the sample variance.

▶ As an illustration, we find the Variational Bayes approximate posterior.
Note:

π(y1, . . . , yn, µ, τ) ∝ 1

τ

n∏
i=1

1√
2π/τ

exp
(
−τ

2
(yi − µ)2

)
log π(y1, . . . , yn, µ, τ) = C +

(n
2
− 1

)
log τ − τ

2
(n − 1)s2 − nτ

2
(y − µ)2
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Variational Bayes: Toy example continued

▶ We use as approximation for the posterior the family of densities
q(µ, τ) = q1(µ)q2(τ), so that we assume µ and τ are independent,
but we do not make additional restrictions on q1 and q2.

▶ We get

exp (Eµ [log π(data, µ, τ)]])

∝τ exp
((n

2
− 1

)
log τ − τ

2
(n − 1)s2 − nτ

2
Eµ

[
(y − µ)2

])
▶ From this we see that

q2(τ) = Gamma

(
τ ;

n

2
,
1

2
(n − 1)s2 +

n

2
Eµ

[
(y − µ)2

])
▶ We get

exp (Eτ [log π(data, µ, τ)]]) ∝µ exp
(
−n

2
Eτ [τ ](y − µ)2

)
▶ From this we see that

q1(µ) = Normal
(
µ; y , (n Eτ [τ ])

−1
)
.
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Variational Bayes: Toy example continued

▶ Taking expectations using these two densities leads to

Eτ [τ ] =
n/2

(n − 1)s2/2 + n/2 · Eµ [(y − µ)2]

Eµ

[
(y − µ)2

]
= (n Eτ [τ ])

−1

▶ This is two equations with two unknowns; solving gives

Eτ [τ ] =
1

s2

Eµ

[
(y − µ)2

]
=

s2

n

▶ The final solution is

q2(τ) = Gamma
(
τ ;

n

2
,
n

2
s2
)

q1(µ) = Normal

(
µ; y ,

s2

n

)
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Second option: Iterative solution

▶ Let us instead consider a family of densities Qpar ⊂ Qprod consisting
of products of n densities where each factor is from some parametric
family, and find the q ∈ Qpar minimizing KL[q||π(data, ·)].

▶ Following the above, we start with a reasonable solution with factors
q1, q2, . . . , qn, then cycle through them and find the qi minimizing

KL
[
qi || exp

(
Eqj ,j ̸=i [log π(data, ·)]

)]
when all the qj with j ̸= i are fixed.

▶ For each optimization, we optimize over the parameters of the qi
density.

▶ A very rough density approximation, but the method may scale well
in very high dimensions.

▶ This is the mean field variational Bayes approximation of the
posterior.
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What if we minimize KL[π(· | data)||q] instead of
KL[q||π(· | data)]?

▶ We have

KL[π(· | data)||q] = −
∫

π(θ | data) log q(θ)

π(θ | data)
dθ

=

∫
π(θ | data) log π(θ | data) dθ −

∫
π(θ | data) log q(θ) dθ

so we only need to find the q maximizing the last term.
▶ If we assume that q(θ) = q(θ | η) =

∏n
i=1 qi (θi | ηi ) we get that∫

π(θ | data) log q(θ | η) dθ =
n∑

i=1

∫
π(θ | data) log qi (θi | ηi ) dθ

=
n∑

i=1

∫
π(θi | data) log qi (θi | ηi ) dθi .

So we optimize by setting qi (θi | ηi ) equal to the marginal posterior
π(θi | data) for each i (or choose ηi to minimize the KL divergence).

▶ Less useful approximations in practice.
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Part 2: The slice sampler

▶ Idea: Do Gibbs sampling from ”the area under the density curve”.
(Illustrate)

▶ More formally, given density fx(x), simulate from the joint density

f (x , u) = I (0 < u < fx(x))

▶ Works even if fx is only proportional to a density.

▶ The challenge is to simulate x uniformly on {x : u < fx(x)}. This is
most easily done if for example fx is a decreasing function, so that it
is invertible.

▶ Example: Simulate from the density π(x) = 1
2 exp

(
−
√
x
)
. We

iterate between the following steps:
▶ Given an x value, simulate u ∼ Uniform

(
0, 1

2
exp

(
−
√
x
))
.

▶ Given a u value simulate x ∼ Uniform
(
0, (log(2u))2

)
: Note that

u = 1
2
exp

(
−
√
x
)
if and only if x = (log(2u))2 and that π(x) is

decreasing as a function of x .
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Generalization to product densities

▶ Importantly, the theory can easily be extended to densities that are
products: When we want to simulate from the density

f (x) =
n∏

i=1

gi (x)

we can define the joint density

h(x , u1, . . . , un) =
n∏

i=1

I (0 < ui < gi (x))

▶ We see that the marginal density for x is f (x).
▶ We simulate from the joint density using Gibbs sampling. This is

very easy for the variables u1, . . . , un.
▶ The conditional distribution of x given u1, . . . , un is the uniform

distribution on the set

∩n
i=1{x : ui < gi (x)}.

If it is easy to compute this set, slice sampling works well. One
example: If all the gi (x) functions are decreasing and invertible.
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Example: The Challenger disaster

▶ The goal is to compute the probability that a space shuttle “o-ring”
fails at a specific temperature. (An o-ring failing because of cold
weather was the cause of the Challenger space shuttle disaster).

▶ Data (x1, y1), . . . , (xn, yn) where xi denotes the temperature (in
Farenheit) and yi is 1 if there is a failure, 0 otherwise.

▶ We use a logistic regression model:

yi ∼ Bernoulli(p(xi )) p(xi ) =
exp(a+ bxi )

1 + exp(a+ bxi )
.

▶ The posterior becomes (using flat priors on a and b)

π(a, b | data) ∝
n∏

i=1

(
exp(a+ bxi )

1 + exp(a+ bxi )

)yi ( 1

1 + exp(a+ bxi )

)1−yi

=
n∏

i=1

exp(a+ bxi )
yi

1 + exp(a+ bxi )
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Example continued

▶ Simulate from posterior for parameters (a, b) using slice sampling:

▶ For i = 1, . . . , n, simulate ui ∼ Uniform
[
0, exp(a+bxi )

yi

1+exp(a+bxi )

]
.

▶ Simulate (a, b) uniformly on set satisfying, for all i , ui <
exp(a+bxi )

yi

1+exp(a+bxi )
.

▶ Corresponds to a+ bxi > log(ui/(1− ui )) for i with yi = 1, and
a+ bxi < log((1− ui )/ui ) for i with yi = 0.

▶ To simulate (a, b) uniformly on this set, we first simulate a with

a ∼ Uniform

[
max
yi=1

(
log

ui
1− ui

− bxi

)
,minyi=0

(
log

1− ui
ui

− bxi

)]
▶ Then for b, we need to be more careful, simulating b uniformly in

the interval of numbers
▶ Greater than

(
log ui

1−ui
− a

)
/xi for i with yi = 1 and xi > 0.

▶ Smaller than
(
log ui

1−ui
− a

)
/xi for i with yi = 1 and xi < 0.

▶ Smaller than
(
log 1−ui

ui
− a

)
/xi for i with yi = 0 and xi > 0.

▶ Greater than
(
log 1−ui

ui
− a

)
/xi for i with yi = 0 and xi < 0.
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Example continued

▶ This is actually Example 7.11 in RC, but the book contains some
errors:
▶ Confusion beween (a, b) and (α, β)
▶ Second and fourth formulas on page 220 are wrong.
▶ No need to use a prior for a and b to get this to work; use centering

instead.

▶ Note that a and b are highly correlated in the posterior if we
implement the code directly. Much improved convergence and
accuracy is obtained by centering the data: Subtracting the average
value from the temperature values, performing the analysis, and
then adding back the average value.

18 / 22



MCMC: Summing up some tips and tricks

▶ Usually a good idea to compute with the logarithm of the posterior,
instead of the posterior itself.

▶ Reparametrize all variables so that they are defined on the real line
(if it is possible and convenient).

▶ Make sure your code avoids underflow and overflow numerical
problems. Make sure a function computing (logged) posterior
density will always return sensible answers for any values that might
be proposed.

▶ Reparametrize the model, if possible and convenient, so that
parameters are as uncorrelated as possible in the posterior.
Otherwise, you may try out a random walk with correlated proposals.

▶ Do a normal approximation if convenient: A mode is nice to know,
and the variances, and the covariance matrix, may be helpful for
deciding step lengths in your MCMC! (Rule of thumb, two times
standard deviation, does not always work).

▶ If available, use some classical anlaysis to find reasonable starting
values for your parameters.

▶ Vary the starting point of the Markov chain! (Propose from prior?)
▶ For more complex models, tailored proposals may be necessary!
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MCMC: Checking convergence

▶ We know the results from MCMC will be correct in the limit when
the sample size → ∞.

▶ Only in very special cases (e.g. using “coupling”) do we know how
big the sample size needs to be to get a certain accuracy.

▶ In practice “checking convergence” means checking for signs of
non-convergence or slow convergence (slow “mixing”):
▶ Monitor variable values and cumulative averages.
▶ Check autocorrelations for variables.
▶ Check acceptance rates (but higher is not always better, unless you

are using independent proposals!)
▶ Use multiple starting points for the MCMC chain!
▶ Use multiple parallell chains, and compare variace within chains with

variance between chains! (Special tests have been developed).

▶ An important ingredient is to understand your model and your
posterior, so that you can guess what might cause convergence
problems, and check for such problems.
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Advantages with Metropolis Hastings

▶ Great flexibility: It will (in principle) work for any (posterior) density
where the density function can be computed up to a constant.

▶ Great flexibility in the choice of proposal function q(x | y).
▶ The algorithm is quite simple and can be easily programmed in

many cases.
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Some problems with Metropolis Hastings

▶ (Small issue): You need to make sure your proposal function makes
the Markov chain ergodic.

▶ (Large issue): Even if the Markov chain converges, it may converge
too slowly for practical use.

▶ (Large issue): Even if very many proposal functions work in theory,
it may be quite difficult to find ones that lead to reasonably fast
convergence.

▶ (Large issue): It is almost always impossible to prove results about
convergence (and thus accuracy), and it is quite often difficult to
ascertain how well a chain has converged.

▶ (Large?? issue): Convergence may become unacceptably slow when
the dimension over which you simulate grows large.
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