MSA101/MVE187 2022 Lecture 14 Graphical models

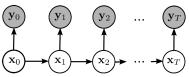
Petter Mostad

Chalmers University

October 12, 2022

From simple to complex models

- ▶ We have looked at Bayesian inference for small models where you may work with the entire posterior distribution, using, e.g., MCMC.
- ► For larger models, one needs to specify and systematically use conditional independencies between variables.
- Example: Algorithms developed for State Space Models (or Hidden Markov Models (HMM)):



▶ The ideas there may be generalized to general networks of variables.

Overview

- ► Graphical models: A way to specify stochastic models.
- ▶ Bayesian networks for modelling and model visualization.
- Using the graph to infer conditional independencies.
- Markov networks.
- Example: Gaussian Markov Random Fields.
- ▶ Using the graph for posterior inference.

Graphical representations of conditional independencies

- In complex models with many variables, it is crucial to model how variables depend on each other.
- ▶ Idea: Represent dependencies in a graph.
 - ► Helpful for visualization.
 - ▶ May use graph theory in connection with computations.
- ▶ We will look at two examples of graphical models:
 - Bayesian networks: Represent the probability density as a product of conditional densities:

$$\pi(x, y, z, v, w) = \pi(x \mid y, z) \cdot \pi(y \mid z) \cdot \pi(z \mid v, w) \cdot \pi(v) \cdot \pi(w)$$

Markov networks: Represent the probability density as a product of factors:

$$\pi(x,y,z,v,w) = C \cdot f_1(x,y,z) \cdot f_2(y,z) \cdot f_3(z,v,w) \cdot f_4(v) \cdot f_5(w)$$

Bayesian networks

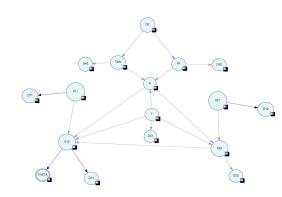
Any joint density can always be written as a product over conditional densities:

$$\pi(x_1,\ldots,x_n) = \pi(x_1)\pi(x_2 \mid x_1)\pi(x_3 \mid x_1,x_2)\ldots\pi(x_n \mid x_1,\ldots,x_{n-1})$$

- Given a specific model, we might be able to drop the conditioning on some of the variables in some factors. The representation then conveys the structure of the model.
- Re-ordering the variables will often give a different representation!
- ▶ The graph with an arrow $x \to y$ for each of the conditionings $\pi(y \mid \dots x \dots)$ in the representation above is the Bayesian Network representation. x is "parent", y is "child".
- Note that, following the arrows, you can never get a cycle. Thus the graph is a *directed acyclic graph* (DAG).
- Conversely, given any DAG and conditional densities for each child given its parents, the product of these gives a joint probability density.

Bayesian networks for visualization

- To the right: An example of a specific graphical network.
- Hierarchical models are, by definition, specified as a series of conditional distributions. The graph represents essential model information.
- Visualizations may use "plates" to represent repeated components.
- Note: Get a sample from the unconditional joint density by "propagating" simulation through network.



Conditional independence

- If x and y become independent when we fix the value of z we say that x and y are conditionally independent given z. We write x ∐ y | z.
- ► Equivalent formulations:

 - $\pi(x \mid y, z) = \pi(x \mid z)$
 - $\pi(y \mid x, z) = \pi(y \mid z)$
- ▶ We use the same definitions and notation when *X*, *Y* and *Z* are disjoint groups of variables.
- Example: When the data x_1, x_2, x_3 is *iid* given the parameter θ , we get for example $\{x_1, x_2\} \coprod x_3 \mid \theta$.

Reading off conditional independencies from a Bayesian network

- ➤ Some conditional independence statements can be "read off" the DAG of a Bayesian network.
- Is there a general way to prove that two sets of variables are conditionally independent given a third set based only on the Bayesian network graph?
- ▶ Preliminary observation: Two children with a single common parent are conditionally independent given the parent.
- Preliminary observation: Two parents with a single common child are generally NOT conditionally independent given the child.
- Definition: A "v-structure" is a part of a network consisting of a child with two parents.

d-separation

- A "trail" in a DAG is an *undirected path* in the graph.
- Assume X, Y, Z are sets of variables. An "active trail" from X to Y given Z is one where, for every v-structure $x_{i-1} \rightarrow x_i \leftarrow x_{i+1}$ in the trail, x_i or a decendant is in Z, and no other node in the trail is in Z.
- We say X and Y are d-separated given Z if there is no active trail between any $x \in X$ and $y \in Y$ given Z.
- ▶ Theorem: If X and Y are d-separated given Z in a Bayesian network representation of a stochastic model, then $X \coprod Y \mid Z$.
- ▶ Theorem: If X and Y are not d-separated given Z in a DAG, then there exists a stochastic model where X and Y are not conditionally independent given Z that has the DAG as a Bayesian network.
- See Koller & Friedman: "Probabilistic Graphical Models" for more details.

A way to check d-separation

Let X, Y, Z be disjoint sets of nodes in a Bayesian Network. Perform the following steps:

- 1. Remove all links from Z to their children.
- 2. Repeatedly, remove all childless nodes not in X, Y, or Z.

Then X and Y are d-separated given Z in the original network if and only if there is no trail from X to Y in the reduced network.

To prove this, prove following statements:

- ▶ Step 1 above does not change the d-separation.
- ▶ Step 2 above does not change the d-separation.
- After steps,
 - ▶ All nodes not in X, Y, Z have a descendant in X, Y, or Z.
 - Nodes in Z have no descendants.
- ▶ In a network fulfilling conditions above, any trail $X \rightarrow Y$ is active.

Markov networks

► For many models, the probability (density) function may be written as a product of positive factors where each involves only a subset of the variables. Example:

$$\pi(x,y,z,v,w) = C \cdot f_1(x,y,z) \cdot f_2(y,z) \cdot f_3(z,v,w) \cdot f_4(v) \cdot f_5(w)$$

- ▶ Note: The *f_i* functions are *not* necessarily densities (i.e., do not necessarily integrate to 1).
- ▶ Assume the representation is maximally reduced, i.e., for any pair of variables *x*, *y* occurring in a factor, the factor cannot be written as a product of two factors where the first does not contain *x* and the second does not contain *y*.
- ► The corresponding Markov network contains an *undirected* edge between *x* and *y* for all nodes *x* and *y* occurring together in a factor.
- ► A Bayesian network may generally be converted into a Markov network using a process called *moralization*.

Conditional independence in Markov networks

Given a Markov network and a set X of variables.

- A Markov blanket Z is a set of variables such that $X \coprod Y \mid Z$ where Y is any collection of variables not in X or Z.
- A Markov boundary is a minimal Markov blanket.
- ► The Markov boundary consists of all variables directly linked to X in the Markov network.
- Given a probability density on a set of variables, it can be specified as the set of conditional distributions of each variable given its Markov boundary.
- However, specifying a conditional distribution for each variable given its neighbours in a graph does not always result in a probability density for all variables.

Simulation in Markov networks using Gibbs sampling

- With a Markov network representation of a posterior, we can set up a Gibbs sampling from the posterior by iteratively simulating from the conditional distribution of each node given its Markov boundary.
- Explicitly: Write down the joint density of all variables, and for each variable θ_i in sequence:
 - Regard all other variables as constants, throw away all factors not depending on θ_i .
 - Interpret the remaining function of θ_i as a standard density, or use it in some more advanced simulation method.
- Note: You need to check that the joint density is proper.
- We may simulate from a posterior represented as a Bayesian network by converting it to a Markov network (using moralization) and then simulate as above.
- Widely used programs like BUGS (WinBugs, OpenBugs), Jags (Just Another Gibbs Sampler), and Stan offer "black box" implementations of Gibbs sampling on wide classes of Bayesian Networks.

Gaussian Markov random fields (GMRF)

A density $\pi(x_1, ..., x_n)$ can be considered a GMRF if it can be written as

$$\pi(x_1,\ldots,x_n)=\exp\left(-f(x_1,\ldots,x_n)\right)$$

where $f(x_1, \ldots, x_n)$ is a quadratic polynomial.

• We can then always re-write the density on $x = (x_1, \dots, x_n)$ so that

$$\pi(x) = \exp\left(-\frac{1}{2}(x-\mu)^t P(x-\mu) + C\right).$$

where μ is a vector, P is a symmetric matrix, and C is a constant.

► The density is *proper* if and only if *P* is *positive definite*. In this case we can re-write the density as

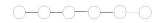
$$\pi(x) = \frac{1}{|2\pi P^{-1}|} \exp\left(-\frac{1}{2}(x-\mu)^t P(x-\mu)\right),$$

so that $x \sim \text{Normal}(\mu, P^{-1})$.

In many cases it may be useful to consider the Markov network for the GMRF.

GMRF and precision matrices

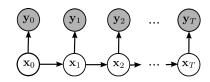
- For a GMRF and two variables x_i and x_j , the following are equivalent:
 - 1. There is no line between x_i and x_j in the Markov network.
 - 2. In the term $a_{ij}x_ix_j$ in the quadratic polynomial f defining the density, we have $a_{ii} = 0$.
 - 3. In the precision matrix P, the ij-th entry p_{ij} is zero.
- Thus, we can read off the Markov network directly from the precision matrix: Its non-zero terms correspond to edges in the Markov network.
- Example: If P is zero everywhere except along the main diagonal and the diagonals closest to it (i.e., $p_{ij}=0$ unless $|i-j|\leq 1$) then the Markov network looks like the graph below (with number of nodes corresponding to number of variables).



Inference for graphical models (BNs or Markov networks)

- ► Two types of inference:
 - Given a network, and given observed values for some variables, how can we make predictions for (or simulate from) some remaining variables using the conditional distribution?
 - Given observations for some variables, how do we find a graphical model for these variables from the data?
- ► The second goal above, learning networks from data, can be extremely difficult. Active area of research.
- For the first question, several options exist, for example:
 - Doing Metropolis Hastings on the joint density of the variables (if not too many).
 - Using the network structure and simulate from the posterior using Gibbs sampling.
 - Using the network structure for exact or approximate inference with algorithms similar to those used with State Space Models / Hidden Markov Models.

Revisiting SSM/HMM



- We may prove that $\{y_{i+1}, \ldots, y_T\} \coprod \{y_0, \ldots, y_i\} \mid x_i$ using d-separation.
- It follows that $\pi(y_{i+1}, \dots, y_T \mid x_i, y_0, \dots, y_i) = \pi(y_{i+1}, \dots, y_T \mid x_i)$ and thus Bayes formula gives

$$\pi(x_i \mid y_0,\ldots,y_T) \propto_{x_i} \pi(y_{i+1},\ldots,y_T \mid x_i) \pi(x_i \mid y_0,\ldots,y_i)$$

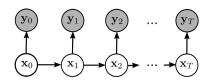
► We can use "Forward" and "Backward" algorithms to recursively compute, respectively,

$$\pi(x_i \mid y_0, \ldots, y_i)$$

and

$$\pi(y_{i+1},\ldots,y_T\mid x_i).$$

Revisiting SSM/HMM



▶ Forward: For i = 0, ..., T compute $\pi(x_i | y_0, ..., y_i)$ using

$$\pi(x_{i} \mid y_{0}, \dots, y_{i})$$

$$\propto_{x_{i}} \pi(y_{i} \mid x_{i})\pi(x_{i} \mid y_{0}, \dots, y_{i-1})$$

$$= \pi(y_{i} \mid x_{i}) \int \pi(x_{i} \mid x_{i-1})\pi(x_{i-1} \mid y_{0}, \dots, y_{i-1}) dx_{i-1}$$

▶ Backward: For i = T - 1, ..., 0 compute $\pi(y_{i+1}, ..., y_T \mid x_i)$ using

$$\pi(y_{i+1},...,y_T \mid x_i)$$

$$= \int \pi(y_{i+2},...,y_T \mid x_{i+1})\pi(y_{i+1} \mid x_{i+1})\pi(x_{i+1} \mid x_i) dx_{i+1}$$

The message-passing algorithm

To generalize the ideas above to a general Markov network:

- ► Represent groups of variables with new variables such that the resulting Markov network becomes a tree.
- Propagate "messages" (i.e., densities) through the tree with algorithms similar to the Forward and Backward algorithms.
- ► This makes it possible to find the marginal distribution at each node of the tree, and thus for each variable.
- May be called the sum-product algorithm when the variables have a finite number of possible values.

Summary: Posterior inference for graphical models

- ▶ We want to fix some variables (called *data*) and compute the posterior distribution of *some* other variables of interest.
- For a Markov network, fixing some variables produces directly another similar Markov network.
- ▶ A Bayesian Network may first be converted to a Markov network, using moralization.
- Run a version of a message passing algorithm: The details vary with the type of variables and conditional distributions:
 - When all variables have a finite number of possible values, computations can be done exactly.
 - Exact computations can also be done when all conditional distributions are multivariate normal.
 - In most other cases, one must use approximations. Example: Particle filters.