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Overview

▶ Applied Bayesian modelling

▶ Model selection

▶ Connections between Bayesian Learning and Machine Learning

▶ An example of a paper using Bayesian modelling (separate
overheads).
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Applied Bayesian modelling

1. Decide on a set of variables whose relationship models the core of
your situation. The should include variables representing data, and
variables for things you want to predict.

2. Formulate a joint model.

3. Is the model appropriate?
▶ Check your model!
▶ Compare different models!

4. Now you want to compute or approximate your prediction in the
model conditional on data. Purely a computational problem!
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How to construct models

General advice:

▶ Use what you believe are cause and effect to guide your model
specification: The effect of something is modelled as a stochastic
variable conditional on the things that caused it.

▶ Write down a corresponding Bayesian network to get an overview!

▶ Examples...
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How to check models

▶ Checking a single model, whether it is ”reasonable”:
▶ Simulating posterior predictive values!
▶ Simulating prior predictive values!
▶ Simulate some variables that it is easy to have an opinion about!

▶ Examples ...
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Bayesian model comparison

▶ Assume you are considering n different models connecting your data
Yd with your prediction Yp.

▶ Let λ have possible values 1, . . . , n and let π(Yp,Yd | λ = i) indicate
model i .

▶ If you specify a prior belief in each model, you can use a combined
weighted model

π(Yp,Yd) =
n∑

i=1

π(λ = i)π(Yp,Yd | λ = i)

with weights wi = π(λ = i).

▶ We get

π(Yp | Yd) =
π(Yp,Yd)

π(Yd)
=

∑n
i=1 π(λ = i)π(Yd | λi )π(Yp | Yd , λi )∑n

j=1 π(Yd | λ = j)

=
n∑

i=1

(
π(λ = i)π(Yd | λ = i)∑n
j=1 π(λ = j)π(Yd | λ = j)

)
π(Yp | Yd , λ = i)

6 / 15



Bayesian model comparison

▶ The prediction π(Yp | Yd) using the weighted model uses a
weighting of the predictions π(Yp | Yd , λ = i) from each individual
model, where the weights are updated from wi = π(λ = i) to

w ′
i =

π(λ = i)π(Yd | λ = i)∑n
j=1 π(λ = j)π(Yd | λ = j)

.

▶ The value π(Yd | λ = i) is the probability of observing the data Yd

given model i .

▶ Except the notation, formulas are exactly the same as when using
mixtures of conjugate priors (see Lecture 3).

▶ If one posterior weight w ′
i is close to 1, we may approximate by

discarding all models but model i . The procedure becomes a model
selection procedure.

▶ Note: When n = 2 we get that
w ′
2/w

′
1 = w2/w1 · π(Yd | λ = 2)/π(Yd | λ = 1).

▶ To use the formulas in practice, we need to be able to compute
π(Yd | λ = i) for all models i .
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Bayesian model comparison

▶ Note: The ideas above cannot be used (directly) to compare a model
i with an improper prior: Then π(Yd | y = i) cannot be computed.

▶ Note: An improper prior should not be interpreted as a limit of a
sequence of proper priors.

▶ Note: How to determine if models are good apriori? (How to
determine prior weights wi?)
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Example of Bayesian model selection

▶ The data consists of counts ci , i = 1, . . . , n, with S =
∑n

i=1 ci .

▶ Model 1: (i = 1, . . . , n)

λ ∼ Gamma(1, 1)

ci | λ ∼ Poisson(λ)

▶ Model 2: (i = 1, . . . , n)

p ∼ Uniform(0, 1)

λ0, λ1 ∼ Gamma(1, 1)

π(ci | p, λ0, λ1) = p Poisson(ci ;λ1) + (1− p) Poisson(ci ;λ0)

▶ Break to compute log π(c | Model 1).

▶ Break to compute log π(c | Model 2).

▶ As π(c | Model 2)/π(c | Model 1) is very large, we see that the
second model fits the data much better. Overwhelms any reasonable
value for w2/w1!
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Example: Continued

▶ Consider Model 3:

π(ci ) = p̂ Poisson(ci ; λ̂1) + (1− p̂) Poisson(ci ; λ̂0)

where (p̂, λ̂0, λ̂1) is the mode of the logpost function.

▶ We get
log π(c | Model 3) = logpost(p̂, λ̂0, λ̂1)

where logpost is the function we programmed in R.

▶
π(c | Model 3)/π(c | Model 2)

becomes larger than 1. So should model 3 be preferred to model 2?

▶ NO: The prior probability for Model 3 is quite low, so w3/w2 should
cancel out the factor above.

▶ Ignoring this leads to overfitting, a serious problem in non-Bayesian
statistics.
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Advice on statistical modelling

▶ Always start with data and a clear question.

▶ Always plot and explore your data, so you understand it as best you
can.

▶ Understand the known science of what is going on as best as you
can, to make a realistic model.

▶ In complicated models:

1. Start with a Bayesian Network for variables needed to describe a
model. Use causality as a guide!

2. Then choose either fixed distributions, or distributions with uncertain
parameters, to relate the variables.

▶ Elicitation for constructing informative priors. (Example: Use of
beta.select in LearnBayes package).
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Comparing Bayesian learning and machine learning (ML)

▶ Bayesian statistics and computation is an important part of ML
technology.

▶ Bayesian inference of various types, e.g., Variational Bayes, has been
used as a way to learn about weights in a neural network.

▶ However, the Bayesian paradigm, as used in this course, is generally
not used in ML.
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A possible way to connect ML with the Bayesian paradigm

▶ For concreteness, we look at the basic problem of classifying digits
(0 - 9) from images, using the MNIST data set.

▶ Using the Bayesian paradigm, Ydata is the set of images and their
classifications, and Ypred is the classification of a new image. We
want to define a joint distribution on these, and then use
π(Ypred | Ydata).

▶ Using ML, you may for example choose a neural network ending
with a softmax layer used to give probabilities for the 10
classification outcomes. You also choose a particular stochastic
algorithm for training of that network, to obtain a single neural
network, which you then use for prediction.

▶ Is it possible to compare or connect the two approaches?
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A possible way to connect ML with the Bayesian paradigm

▶ The neural network parameters should be identified with θ, the
parameter of the Bayesian model.

▶ The likelihood defined by the data is the same in both approaches.
We also have conditional independence of the observations, and of
any new prediction, given the parameter θ.

▶ In Bayesian inference one would find a posterior for θ (i.e., a
posterior on the set of networks) and average over it for predictions.

▶ In ML one uses (most often) a single network for predictions.

▶ To make a comparison, we assume the Bayesian approach is to
sample a single θ̂ from the posterior.

▶ The Bayesian approach will sample θ̂ from a distribution whose
logdensity is

Loglikelihood(θ) + Prior(θ) (1)

where in ML Loglikelihood is the negative of the Loss and Prior

is the negative of a regularization term.

▶ By comparison, ML will use a similar Equation 1 and a stochastic
algorithm, but also test- and validation-data, to produce a NN θ̂.
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A possible way to connect ML with the Bayesian paradigm

1. Given an NN, can we establish a clear correspondence

Prior(θ) functions ↔ Stochastic ML algorithm producing θ̂

2. Is such a correspondence of practical use when developing new
algorithms / models?

▶ Note: Priors need to be more advanced than currently used
regularization terms.

▶ Note: Simulation in the posterior is not straight-forward in the
relevant high dimensions.
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