
Algorithms. Lecture Notes 1

These Lecture Notes are mainly based on: Kleinberg, Tardos, Algorithm

Design, and they are also influenced by other books and materials.

Several sections have “Problem” in the headline. They specify the ex-

amples of computational problems that we discuss next in the course. It is

recommended that you:

• First, familiarize thoroughly with the problem specification, maybe

draw some small examples.

• Then, think a while for yourself: How would I approach this problem,

with my current knowledge?

• Finally, continue and learn about the proposed solutions.

1



About Algorithms in General

Until recently the word “algorithms” was only known to specialists, but

nowadays algorithms are even discussed in the media, in connection with

big data analytics and automated decision making, and often without a

clear idea what the notion of “algorithm” actually means. Let us clarify the

notion first:

An algorithm is nothing but an instruction for doing some calculations.

These calculations should “make sense”, more precisely, we intend to

use algorithms to solve problems. Here, a problem is specified by a set of

instances (inputs) and a desired result (solution, output) for every instance.

An algorithm must return a correct solution for every possible instance.

We will always use the terms “problem” and “instance” in this sense, so

distinguish them carefully. A simple example of a problem is the addition of

two integers: Given a pair (x, y) of integers, we wish to compute their sum

x + y. Here, every specific pair (x, y) is an instance, whereas the problem is

to compute x + y for every possible instance (x, y). Note that, in general, a

problem has infinitely many possible instances (at least in principle, ignoring

physical limitations). Now we can state in more detail:

An algorithm is a precise and unambiguous description of the calculations

to be done in order to solve a given problem for every possible instance.

One may object that this is not really a definition, just an intuitive and

informal circumsciption. This is true! Actually there exist also formal defi-

nitions of the concept of algorithms, such as Turing machines and recursive

functions. But they are a bit technical, moreover, one cannot prove that

they exactly capture what we would like to call algorithms, because for a

proof we would first have to formalize what algorithms are, and just this

formalization was the job of the definition, so we have a hen-and-egg prob-

lem. Independently of this issue, an intuitive understanding of the concept

is sufficient as long as we are concerned with specific algorithms for specific

problems. For any specific calculation instruction it is easy to confirm that it

is indeed an algorithm in the intuitive sense. A formal notion of “all possible

algorithms” is needed only if we want to explore the limits of computation

and prove that some problem cannot be solved by any algorithm (such as

the halting problem).

Nevertheless, in order to emphasize one typical feature of algorithms we

mention one of these formal definitions – the Turing machine. It formalizes

the idea that the work of any algorithm can be divided into extremely simple

2



steps: navigate in a discrete space (e.g., simply a tape) where symbols are

written, read a symbol, or write a symbol. Moreover, the next action can

be conditional on what symbol has been read, and on an internal state.

The whole control unit consists of a table that says what action shall be

performed next, depending on the current state and on the symbol read.

The Church-Turing thesis holds that all algorithms can be formalized in

this way, that is, other kinds of steps are never needed. However, a deeper

discussion of this thesis would touch on philosophical questions.

The Turing machine is an abstract model of a universal computer. From

a more practical angle we can say: Since algorithms are composed of ex-

tremely simple steps, they can be delegated to real machines. Algorithms

can be executed mechanically, without human intervention or appeal to

human intelligence. In this sense, an algorithm is “mindless”, once it is

available. But, as opposed to this, creativity is needed to get to that point,

i.e., to discover or develop an algorithm for a given problem. This creative

process will be our focus. But beware:

Myth: Developing algorithms is programming. – Not true!

Of course, computer programs are nowadays the way to execute algo-

rithms. But algorithms existed already long before the advent of computers.

Actually, the word is derived from the name al-Khwarizmi, a Persian scholar

(780–850) who wrote an early textbook on arithmetic calculations. Various

nontrivial algorithms were already known to ancient mathematicians, such

as Euclid’s algorithm for the greatest common divisor, and Eratosthenes’

sieve method for finding the prime numbers.

Some of the simplest examples of algorithms are the well-known “school

methods” for adding or multiplying two numbers “on paper”. In fact, they

deserve the name algorithm: They specify which simple operations with

digits we have to do in which order, and how these partial results have to

be combined to get the correct final result.

We emphasize that algorithms and computer programs are different

things. A program implements an algorithm, i.e., it realizes an algorithm in

a specific programming language. But an algorithm as such is an abstract

mathematical entity. This distinction is not just an academic matter, but it

has at least two major practical consequences:

1. Whenever we want to solve a new problem, we should first focus on

the problem itself, analyze it, and develop an (abstract!) algorithm, without

3



already worrying about implementation details and coding tricks. At this

stage this would only distract attention from the actual problem. Algorithm

design happens before any line of code is written. This process of algorithm

design, but not the programming, is the main subject of this course. Except

for very trivial problems, implementing the first quick ideas that come into

mind would only lead to bad, slow, or even incorrect programs.

2. How do we explain algorithms, especially new algorithm, to other

people? Long chunks of program code are hard to read. Code is perhaps even

the worst way to explain an algorithm, even when extensive comments are

added. The same remark that we made on algorithm development applies to

the understanding of algorithms: Implementation details that depend on the

programming language can easily obscure the actual idea and the structure

of the algorithm as such. In this course, never describe algorithms

by code! Instead, use natural language and explain how they work. But

still you need to be precise and unambiguous, therefore use mathematical

notation whereever appropriate. It might be hard to find the right balance,

however, as a guideline you may use these criteria for a good algorithm

description: It is readable like a good manual, and a skilled programmer

would be able to fill in the details and to implement the algorithm, using

your description only. Commented pseudocode is a compromise between

code and purely verbal descriptions. Algorithms written in pseudocode look

like programs in usual procedural programming languages, but they are freed

from non-essential or straightforward details.

More generally (not only in the algorithms field), it is not an exaggera-

tion to say that clear, structured, and reader-friendly technical writing is a

challenge in itself, and it must be practiced.

Time Complexity

Let x, y be two given integers. What is easier: to add them (compute x+y)

or to multiply them (compute x · y)?

Most people would spontaneously say that addition is easier than multi-

plication. But in what sense is it easier? It is natural to consider a problem

“easy” if we can solve it by some fast algorithm.

Time complexity, that is, the time needed to solve a problem, is the

most important performance measure for an algorithm. The amount of other

resources (memory, communication, etc.) can also be relevant, but time has

4



a special role: Because every action needs time, the time complexity limits

the use of other resources as well.

But what could be a meaningful definition of time complexity?

Here is an attempt: Time complexity of an algorithm is its running time

for every instance. More formally, we define time complexity as a function

that assigns a positive real number (the running time) to every instance.

However, this definition would not be practical. The exact time for every

isntance can be an extremely complicated, even incomprehensible, function.

On the other hand, it is not really necessary to know the exact running time

on every instance.

We can greatly simplify the matter by only specifying the running time

on instances of any given instance size n. That is, we define time com-

plexity as a function from the positive integers (the instance sizes) into the

positive real numbers (the running times). We may take the maximum or

the average running time for all instances of size n, and speak of worst-

case and average-case time complexity, respectively. Moreover, instead of

the exact maximum it is good enough to know some (close) upper bound.

Such worst-case bounds provide guarantees that an algorithm stops after

at most the indicated time. For certain algorithms, worst-case bounds can

be too pessimistic: An algorithm might run fast on typical instances and

need very long times only for some rare malicious instances. Then average-

case analysis is more appropriate. However, in this basic course we will

mainly consider worst-case bounds, unless stated otherwise

But the above draft of a definition is not yet usable either. The next issue

is: What should be the meaning of the positive real number that indicates

the running time (for a certain input size n)? Counting seconds does not

make sense here, because the physical running time depends on things like

the speed of our processor, minor implementation details, and other contin-

gencies that have nothing to do with the algorithm itself. (Recall that an

algorithm is an abstract mathematical object, not a particular implemen-

tation on a particular machine.) Hence absolute figures for each n do not

say much. Still, the time complexity function in its entirety is a meaningful

object: If machine A is faster than machine B by some factor c, then any

algorithm implemented on A will run c times faster than on machine B, but

the “shape” of the function remains invariant. Therefore we will usually

ignore constant factors in time complexities. Instead of the physical time

we only consider the growth of the time complexity as a function of n. Of

course, this is an abstraction. In practice we can ignore constant factors

5



only if they are unreasonably small.

But, in order to specify the time, we still need to count something! What

if not seconds? – Recall that the work of any algorithm can be split into very

simple steps. We call them elementary operations or computational

primitives. We simply count these elementary operations carried out by

an algorithm. Note that this number depends only on the algorithm and

the instance, but not on the physical circumstances.

Still a certain doubt remains: The definitions of what is considered el-

ementary operations may be a bit arbitrary: Among other things, they

depend on the type of data we have to deal with. Moreover, we should not

“compare apples and plums”, that is, operations declared elementary should

have similar execution times in reality, so that we can reasonably assume

that the number of operations is proportional to the running time. Similar

remarks apply to the definition of input size n. Usually, n is the number of

symbols needed to write down an instance, but for each data type we must

agree on some concrete definition.

For example, for analyzing arithmetic operations with integers like addi-

tion and multiplication, it is sensible to count operations with single digits.

Accordingly, our elementary operations are: addition and multiplication of

two digits (with carry-over), and reading or writing a digit. The size n of

an instance is simply the number of digits.

It is important not to confuse this instance size n with the numerical

values of the numbers to be processed! Their difference is tremendous: The

size is only logarithmic in the numerical value. Conversely, this means that

the numerical value is exponential in the size.

For algorithmic problems involving vectors and matrices of real numbers,

it can be appropriate to consider additions and multiplications of entire

numbers (rather than digits) as elementary operations. For other types

of data, such as sequences or graphs, meaningful definitions of elementary

operations and instance sizes must be adopted in an ad-hoc way.

It should also be noticed that we always analyze mathematical models

of time complexity, rather than computations in specific real computer pro-

cessors. But, of course, we try to keep our simplifying model assumptions

close to reality.

6



Big-O Notation

The notion of upper bounds suppressing constant factors is formalized by

the O-notation: For two functions t and f from the positive integers into

the positive real numbers, we say that t is O(f(n)) (speak: “O of f” or

“big-O of f” or “order of f”), if there exists a constant c > 0 such that

t(n) ≤ cf(n) holds for all n, with finitely many exceptions. Informally that

means: t will eventually grow no faster than f .

The O notation comes comes from the field of Mathematical Analysis,

but here we will use it to express time bounds of algorithms. Typically, t

is the exact running time, and f is some (usually simple!) function that

bounds the running time.

One should not completely forget that constant factors are ignored. In

some cases these hidden constants can be huge, and then expressions like

O(n) bogusly suggest practical algorithms. But apart from rare exceptions,

usually the hidden constants are moderate.

There is also a notational issue: To be mathematically strict, one should

define O(f) as the class of all functions t with the mentioned property, and

write t ∈ O(f). Instead, it is quite common to use the convenient but

inaccurate notations t = O(f(n)) or O(t) = O(f). They are not meant

as equations but as shorthands for “t is O(f)”. Therefore be very careful:

From O(t) = O(f) one cannot conclude O(f) = O(t).

First Example:

A Comparison of Arithmetic Operations

Now we can precisely say in what sense addition is easier than multiplication.

Remember the conventions regarding elementary operations and instance

size.

Adding two integers of length n requires obviously O(n) time. This time

is optimal, that is, no faster algorithm for addition can exist. The reason

is simple: Since the sum depends on every digit, we must at least read the

whole input, which costs already O(n) time.

Next, adding m numbers, each with n digits, requires O(mn) time. This

is no longer obvious, because of the carry-over! But with some care one can,

in fact, prove an O(mn) time bound. This time bound is also optimal, for

the same reason as above.

7



Regarding multiplication of two integers with n digits, the algorithm one

usually learns at school reduces this problem to the addition of n integers,

each with O(n) digits. Due to the previous statement, this yields the time

bound O(n2). Is this optimal as well? The trivial lower-bound argument

used above says only that we cannot be faster than O(n) time. Still this

leaves hope for a multiplication algorithm faster than O(n2).

An indication that the usual method for multiplication might not be the

fastest one is that the n partial results to be added are not “independent”:

In the decimal system, at most 9 different sequences of nonzero digits can

appear as summands, as we multiply every digit of one factor by the entire

other factor. But the usual algorithm reads all these partial results repeat-

edly. Maybe this is not necessary. Maybe the algorithm repeats calculations

that have already been done elsewhere. On the other hand, it is not easy to

see how we could take advantage of these special summands. Hopefully this

discussion makes you curious about the existence of a faster multiplication

algorithm.

Some Useful Properties of Big-O

First and foremost, O(f(n) + g(n)) equals O(max(f(n), g(n))). (The simple

proof is omitted here.) It follows that, in an upper bound consisting of a

sum of terms, only the worst term is important, i.e., the function with the

biggest growth. In particular, if the bound is a polynomial of degree d, then

only this highest degree is significant, but neither the coefficients nor the

minor terms. Formally:

c0n
d + c1n

d−1 + c2n
d−2 . . . = O(nd).

This property makes O-expressions typically very simple. Lengthy sums of

terms appear naturally in the time analysis of algorithms, since most algo-

rithms consist of several parts, often with nested loops and other structures.

Nevertheless, the overall time bound is usually a simple standard function.

This property has yet another nice aspect: As pointed out earlier, the

definitions of instance size and of elementary operations with data are a little

arbitrary. But due to the neglect of constant factors and minor summands,

the time complexity of an algorithm expressed in O-notation is not sensitive

to all these arbitrary choices in the details of the definitions. All “natural”

definitions yield the same O-bounds. In this sense, O-bounds are robust,

and they are objective performance measures.

8



As we want to compare algorithms by their speed, we should be able to

compare the growth of several standard functions, and also get a feeling for

growth rates. A useful general result says: If f is any monotone growing

function, and c > 0, a > 1 are constants, then (f(n))c = O(af(n)). (Again

we omit the proof. It needs some mathematical analysis, however this result

is plausible.) We give two important examples of the use of this result:

With f(n) = n we get nc = O(an). In words: “polynomial is always smaller

than exponential”. With f(n) = loga n we get (loga n)c = O(n). In words:

“polylogarithmic is always smaller than linear.”

Logarithms are common in time bounds, especially in certain algorithms

that successively halve the input. A frequent constellation is a bad O(n2)

time algorithm against a clever O(n log n) time algorithm for the same prob-

lem. Then we should appreciate that the latter one is significantly faster:

we have n log n = O(n2), but not vice versa.

Note that we may write log n in O-terms without mentioning the log-

arithm base, since logarithms at different bases differ by constant factors.

(In the case that this is not clear, it is advisable to recapitulate the laws of

logarithms ...)

A convenient way to prove O-bounds is to consider limits of ratios. For

example, for any fixed c the following implication holds:

lim
n→∞

t(n)/f(n) = c ≥ 0 =⇒ t = O(f).

Finally we emphasize the special role of polynomial bounds. If the

size of the instance of a problem is doubled, we would like the time to grow

by only a constant factor, too. That is, the time bound f should satisfy

f(2n) ≤ cf(n) for some constant c. This condition can be rephrased as

f(n) ≤ nd for some constant exponent d. Thus, in general we consider an

algorithm “efficient” only if it has a polynomial time bound. For example,

the known algorithms for addition and multiplication have polynomial time

bounds.

Problem: Interval Scheduling

Given: a set of n intervals [si, fi], i = 1, . . . , n, on the real axis. (An interval

[s, f ] is defined as the set of all real numbers t with s ≤ t ≤ f .)

Goal: Select a subset X of these intervals, as many as possible, which are

pairwise disjoint.

9



Remark: We may suppose that all 2n start and end points are distinct.

Otherwise we can make them distinct by slightly extending some intervals,

without creating new intersections.

Motivations:

Some resource is requested by users for certain periods of time, described

by intervals with start time si and finishing time fi. That is, a problem in-

stance is a booking list with n intervals. Unfortunately, the intervals of many

requests may overlap, because reservations have been made independently

by several users. Our goal is to accept as many as possible of these requests.

10



Appendix

Here are some optional self-test questions about O-notation. Try to answer

them, just for yourself. You may be wondering: “How do I know that my

answers are correct?” But that’s the point! If you have understood the

subject very well, you will be sure about your answers. This also implies: If

you feel uncertain, you should discuss them with us or with your classmates.

• O(3n2 + n) = O(n2) – is this correct?

• O(n log n) = O(n), because log n is very small compared to n and can

be neglected – is this correct?

• n log n is in O(n log logn) – is this correct? And in the other direction?

• Is O(n + . . . + n) = O(n) correct? Does the answer depend on the

number of summands?

• O(n + n/2 + n/4 + n/8 + . . .) = O(n) – is this correct?

• O(n
√
n) = O(2n) – is this correct?

• Integers can be represented in the decimal system (base 10), the binary

system (base 2), or using any other fixed base. We stated that two

integers with n digits can be added in O(n) time. Is this true for every

fixed base?

• Given an integer z with n digits, we can check whether z is a prime

number by generating all products x · y with x, y < z and compare

them to z. (This is not a very smart algorithm, but let us ignore this

fact.) What do you think: Is the time of this algorithm polynomial in

n?

• The definition of t = O(f) allows the violation of t(n) ≤ cf(n) for

finitely many n. Would we obtain an equivalent definition if we forbid

such exceptions? Furthermore, do you have an idea why such excep-

tions are useful when we show time bounds for algorithms?

11


