Algorithms. Lecture Notes 2

An Algorithm for Interval Scheduling

According to the spirit of the course, this section illustrates a possible process
of algorithm development for a problem, rather than giving a good algorithm
right away.

A naive algorithm would examine all subsets of the given set of intervals
and therefore run in O(n?2") time, where the n? factor accounts for checking
the validity of a chosen subset. (Do not worry about the details of a poor
algorithm. The inportant fact here is that more than 2™ steps are used.)
Let us try and develop a much, much faster algorithm.

Here is a good heuristic question for algorithm development in general:
Suppose that we are already able to solve the problem for smaller instances,
how can we use the partial solutions to solve the overall instance? Since
instances of most computational problems can be split into smaller instances
of the same problem in some natural ways, this is a very fruitful approach.

In the case of Interval Scheduling we may ask more specifically: Suppose
that we know already how to find the best solution for less than n intervals.
Can we perhaps make a decision for one interval z (that is, to put it in the
solution X) and then solve the remaining instance?

We can express our wish more explicitly: We would like to find some
general rule that determines one interval x that we can safely put in X.
Then we could remove all intervals that intersect = (this is enforced by the
problem), and continue applying our rule until the instance is empty.

However, we have many options to choose this interval z.

A tempting idea is to serve the first request, i.e., let  be the interval
with smallest s;. But the drawback is obvious: This first interval could be
very long. It could even intersect all others, and then it is a bad choice.

Perhaps we should take the lengths f; — s; into account? Let us make
another attempt: Let x be the shortest interval. The intuition is that, typi-
cally, short intervals should not intersect many others. — But unfortunately,



“typical” is not enough. The shortest interval does not necessarily belong
to an optimal solution either. The smallest counterexample has only three
intervals and is easy to see!

It is time to analyze the reasons for these failures and to learn from them.
Our selection rules were bad because the selected intervals may overlap too
many other intervals. This suggests yet another idea: Let x be some interval
that intersects the smallest number of other intervals. — This sounds very
plausible, but sadly this rule fails, too, although this time it is a little harder
to find a counterexample. The idea of a counterexample is to work with
identical copies of some intervals. Since intervals in X must be pairwise
disjoint, this does not affect the optimal solution. But by chosing suitable
numbers of copies, one can give some interval x ¢ X in the middle the
smallest number of overlaps, such that the algorithm would wrongly choose
z. This way one can construct a counterexample with 11 intervals.

So the third attempt failed, too. We may try further rules until we are
lucky, or we may decide to give up at some point. One last attempt: What
else could be a good candidate for the interval x?

“Fver tried. Fver failed. No matter.
Try again. Fail again. Fail better.”
(Samuel Beckett)

Counterexamples are not unfavorable. While they prove incorrectness of
some specific algorithm, they can also give valuable hints on what exactly
goes wrong. Reviewing the above cases again, we may notice that, in the
last two attempts, the selected intervals were somewhere in the middle of
the schedule. What if we come back to the original idea and look at the be-
ginning of the schedule? But taking the interval with earliest starting point
was bad. What if we instead take the interval with the earliest endpoint!?
The rationale is that this interval is in conflict with the smallest number of
other intervals in the remaining instance to the right of its endpoint. For
clarity, let us write down the proposed algorithm explicitly:

Earliest End First (EEF): Sort the intervals according to their right end-
points. That is, re-index them such that fi < fo < ... < f,. Put the
interval [s1, fi] (the one with the smallest f;) in X, and delete all intervals
that intersect this first interval. Repeat this step until every interval is either
in X or deleted.



This time we will not detect counterexamples. But after the bad experi-
ences where we saw plausible rules breaking down, it should be clear that we
need a correctness proof. It is not enough to say that no counterexamples
are known. There might exist some, but they might be relatively large and
non-obvious (as it happened with the last wrong algorithm above). Now,
here is a proof of optimality:

Assume that there exists a counterexample, that is, an instance where
EEF fails to return an optimal solution Y. That is, the solution X from EEF
has size |X| < |Y|. Let x be the interval with the earliest end. If x ¢ Y, then
we take the leftmost interval y € Y and exchange it: Let Y/ = Y\ {y}U{x}.
Since x has the earliest end, Y’ is also a set of disjoint intervals. Moreover,
|Y’| = |Y|. Hence Y’ is another optimal solution. This shows that some
optimal solution Y’ with x € Y exists.

Informally, we have shown that “it is not a mistake” to choose interval
z in the first step, as EEF does. It is also worth noticing that the defining
property of x is essentially used in the proof. Of course, the rule of the
algorithm must play some role.

But so far we have exchanged only one interval. How does this imply
correctness of EEF? We can do a proof by contradiction:

Remember that we assumed a counterexample, where EEF returns some
set X being smaller than an optimal solution Y. After deletion of x and of all
intersecting intervals, there remains a smaller instance where EEF returns
X\ {z}. But Y\ {z} is a valid solution, too, and |X \ {z}| < |[Y"\ {z}|.
Hence the EEF solution is not optimal on this smaller instance either. That
is, we have found a smaller counterexample!

Hence we have shown: For every counterexample to EEF there exists
another counterexample with fewer intervals. On the other hand, some
counterexample must have the minimum size. This contradiction proves
that the initial assumption (existence of some counterexample) was wrong.
Thus EEF is correct.

We remark that the same proof can also be formulated as induction
on the number of intervals, which is logically equivalent. But the present
formulation via a smaller counterexample might appear more intuitive and
elegant.

The next step is to think about the implementation details that make
the algorithm efficient. We had already sorted the intervals in such a way
that f1 < fo < ... < fn. Now we may scan this sorted list from left to right,
and record the currently last interval [s;, f;] € X. When we read the next
fi, we simply check whether s; < f;. If so, then we skip [s;, f;], since this



interval cannot be in X. If not, then we add [s;, f;] to X, according to the
rule of EEF. Hence this is our new [s;, f;]. Since we spend only O(1) time
on each interval, we need O(n) time in total, plus the time for sorting.

Note that, in this implementation, intervals not chosen in X are merely
skipped rather than “physically” deleted. But this does not make a differ-
ence, because skipped intervals are never considered again. The formulation
with deletions was better suited for understanding the algorithm itself and
its correctness, but for the sake of speed, the proposed implementation han-
dles this detail differently. This illustrates again that one should first care
about solving the problem, and only later about programming details and
fine-tuning.

To What End Do We Study Algorithm Theory?

Myth: Fast algorithms are not needed (because the hardware is so fast). —
Not true!

From comparing the growth of different functions it should be clear that
the O-complexity of an algorithm has a larger impact on its practicality
than the speed of processors.

Next, since an algorithm for a problem must be created only once but
will be applied many, many times, good algorithm design ultimately will
pay off.

Therefore it is important to solve various computational problems by fast
algorithms. Does this mean that we have to learn a suite of fast algorithms
for the most frequent problems? Yes, but this is not enough. Practical prob-
lems rarely arise in nice textbook form, and usually we cannot simply take
an algorithm from the shelves. Often we must adjust or combine algorithms
that are known for similar problems or for parts of a given problem. In order
to be able to do all this, we need a profound understanding of how and
why these algorithms work. We have to understand the underlying ideas,
not only the particular steps.

Moreover, new computational problems will in general require new algo-
rithms. There is no universal recipe for designing good algorithms, except
some general guidelines and techniques. The main part of this course pro-
vides some of these general design techniques, a basic toolkit so to speak.
We illustrate and practice them on various problem examples. But still
the actual algorithm design for a given problem remains a trial-and-error



process. (Compare it to craft: Even if one knows one’s trade, every appli-
cation is a bit different, and one must extemporize.) The selected problems
are, hopefully, also of some relevance by their own, but the emphasis is on
the design process, rather than on the ready-to-use algorithms for specifc
problems.

We also have to practice proving correctness of new algorithms.

Myth: Correctness proofs are not needed, it suffices to test algorithms
on some instances. — Not true!

Recall the Interval Scheduling example. Various algorithms appeared to
be plausibe, but they failed. By not caring about correctness proofs we may
happily accept erroneous algorithms. Proofs are not a luxury, just made to
intellectually please a few researchers, and testing alone cannot guarantee
correctness. We may pick, by good luck, some test instances where our
algorithm yields the correct results, but it may have a hidden error that
shows up in other instances. This can have fatal consequences, especially
in sensible technical systems controlled by algorithms, and so this matter
touches even questions of ethics in engineering.

Now we can summarize our main goal more precisely: Develop correct
algorithms with low worst-case time bounds which are, preferably, moderate
polynomials.

About Greedy Algorithms

Earliest End First is an example of a greedy algorithm. These are algo-
rithms which, in every step, make the currently best choice, according to
some simple optimality criterion. (Once more this is not a formal definition,
just a circumscription.) In this sense, greedy algorithms are “myopic”.

Myth: Take the best, ignore the rest. If we take an optimal decision in
every step, then the overall result will be optimal, too. — Not true!

“Greed is good. Greed is right. Greed works.” claimed the broker
Gordon Gekko, a character in the 1987 film “Wall Street”.

Actually most greedy algorithms are plainly wrong, and counterexamples
are often amazingly small. As we have seen, we do need correctness proofs.
The key step of such a correctness proof is often an exchange argument:



One item of an optimal solution Y is exchanged, in such a way that Y gets
closer to the solution produced by the algorithm, without making it worse.
For example, in the correctness proof of EEF we took the leftmost interval
of Y and replaced it with the interval with the earliest end in the whole
instance (which the algorithm would have chosen). Then, the exchange
argument is embedded in an inductive proof or in a proof by contradiction.

Problem: Weighted Interval Scheduling

Given: a set of n intervals [s;, fi], ¢ = 1,...,n, on the real axis. Every
interval has also a positive weight v;.

Goal: Select a subset X of these intervals which are pairwise disjoint and
have maximum total weight.

Motivations:

Similar to Interval Scheduling, but here the requests have different im-
portance. The weights might be profits, e.g., fees obtained from the cus-
tomers.



