
Algorithms. Lecture Notes 3

An Algorithm for Weighted Interval Scheduling

After the Interval Scheduling success we dare to attack a more general prob-
lem –Weighted Interval Scheduling. The natural first thought is to try and
generalize the EEF algorithm directly. Again we sort the intervals such that
f1 < f2 < . . . < fn. However, because of the different weights vi it is no
longer true that we can always put the first interval in an optimal solution
X. This interval could have a small weight and intersect some other, more
profitable intervals. This makes the problem essentially more difficult than
Interval Scheduling. The weights “add another dimension” to the problem.
But can we perhaps extend solutions of smaller instances to larger instances
in some more sophisticated way?

We may decide for each interval in the sorted sequence to add it to X
or not. This sounds like exhaustive search. However, a striking observation
regarding the “interval structure” of the problem limits this combinatorial
explosion: Suppose that we have decided the status of the first j intervals
(to be in X or not). Consider all partial solutions where [sj , fj ] ∈ X. Among
all these (exponentially many!) partial solutions that end in fj , it suffices
to keep only one(!) partial solution Xj with maximum total weight. Why
is this correct? Let X be any overall solution that contains [sj , fj ]. If Xj is
not a subset of X, then we can replace the subset of intervals in X that end
before fj with Xj , to obtain a solution that is no worse. Hence it is safe to
assume Xj ⊂ X.

In the following we state the resulting algorithm, along with the correct-
ness arguments.

1



(1) Defining the objective value:
For j = 1, . . . , n, we define OPT (j) to be the maximum weight that

can be achieved by selecting a subset of disjoint intervals from the first
j intervals, i.e., from those with endpoints f1 < f2 < . . . < fj . (Note
carefully that this definition does not require to put [sj , fj ] in the solution;
this interval may be chosen or not.) Our final goal is to evaluate OPT (n).

(2) Computing the objective value:
“To add or not to add, that is the question.”

We can inductively compute every OPT (j) from the previously com-
puted values OPT (i), i < j: By definition we have OPT (1) = v1. Next,
suppose that all OPT (i), i < j, are already computed. For the interval
[sj , fj ] we have two options: to add it to the solution or not. If we don’t,
then the best total value is clearly OPT (j−1). If we decide to put [sj , fj ] in
the solution, then it contributes vj to the total value, but we have to make
sure that the new interval does not intersect any earlier one. For this step
we need some auxiliary function: Let p(j) be the largest index i such that
fi < sj . We can take the known solution with value OPT (p(j)) and add the
new interval. By the observation above, only this best solution is needed in
this case. Altogether we have shown that the following formula is correct:

OPT (j) = max{OPT (j − 1), OPT (p(j)) + vj}.

This part of the algorithm amounts to a simple for-loop, with all OPT (j)
stored in an array. Of course, prior to this calculation we must compute
and store all the p(j) in another array. (The vj , sj , fj are already given in
arrays.) It is easy to compute the p(j) in a single scan: We also sort the
sj in ascending order. Then we determine, for every j, the largest fi < sj .
Since we have sorted the sj , it suffices to move a pointer in the sorted array
of the fi. Hence we can compute all p(j) in O(n) time, plus the time for
sorting. The for-loop that computes the OPT (j) values needs O(n) time,
which should be obvious: In every iteration we do one addition and one
comparison. (Here we assume that addition and comparison of two numbers
are elementary operations.)

Note that the formula above is recursive: OPT (j) is computed by recur-
ring to function values for smaller arguments. But beware: It would be a
big practical mistake to implement this formula in a recursive fashion, i.e.,
as a subroutine with recursive calls to itself! What would happen? Every
call spawns two new calls, so that the process splits up into a tree of inde-
pendent calculations, where the same OPT (j) are computed over and over
again in many different branches. (This does not happen if our compiler

2



recognizes repeated calls with the same input parameter and just returns
the function value. But the algorithm itself should not rely on that.) The
time would be exponential, thus destroying the whole idea that made the
algorithm efficient, namely, to compute every OPT (j) only once. This illus-
trates again the importance of understanding the structure of an algorithm.
It is not enough to hack formulas in the computer.

Now, have we solved our problem? No. We have computed the value
OPT (n), but where is the actual solution, that is, a subset of disjoint in-
tervals that realizes this profit? An obvious idea to get the solution would
be: Whenever we compute and store a new value OPT (j), we also store a
corresponding set of intervals. (After all, we know whether the jth inter-
val has been added to the solutuon for OPT (j − 1) or not.) However, this
would require many copy operations and result in O(n2) time. Compared
to exponential time this is very good, but unnecessarily slow nevertheless.
Surprisingly, we can construct a solution much faster, using only the stored
values OPT (j):

Remember how we obtained OPT (n). We compared two values, and
depending on which one was larger, we took the nth interval or not. Just
by reviewing the OPT values we see what the optimal choice was. Next we
review either OPT (j − 1) or OPT (p(j)) in the same way, and we find out
whether the considered interval was taken or not, and so on. In other words,
we trace back the sequence of optimal decisions. By this procedure we can
reconstruct some optimal solution in another O(n) steps.

Dynamic Programming versus Greedy

The scheme used in the algorithm above is called dynamic programming,
mainly for historical reasons. It can be characterized as follows.

For a given instance of a problem, we consider certain sub-instances
that grow incrementally. For each of these sub-instances it suffices to keep
one optimal solution (because, by an exchange argument, no other solution
can lead to a better final solution for the entire instance). The optimal
values are then computed step by step on the growing sub-instances. A
“recursive” formula specifies how to compute the optimal value from the
previously computed optimal values for smaller sub-instances. However, it
is not applied recursively, rather, the values are stored in an array, and
calculations happen in a for-loop.

This approach is efficient if we can limit the number of sub-instances to
be considered, ideally by a polynomial bound. (This distinguishes dynamic
programming from exhaustive search.) These sub-instances are often defined

3



by some natural restrictions, like the number of items, or some size bound.
The time bound is simply the size of the array of optimal values, multi-

plied by the time needed to compute each value.
Although this array displays only the optimal values, an actual solution

is easy to reconstruct in a backtracing procedure where we examine, in
reverse chronological order, on which way the optimum has been reached.
The time for backtracing is no larger than the time for computing the opti-
mal values, as we have to trace back only a path of calculations that were
already done.

This outline may still appear a bit nebulous. The best way to fully
understand dynamic programming is to study a number of problem examples
of different nature, as we will do now. At some point one should notice that
the basic scheme is always the same, and only the recursive formula and
other specific details depend on the problem.

Dynamic programming can be viewed as restricted exhaustive search,
but also as an extension of the greedy paradigm. Instead of following only
one path of currently optimal decisions, which may or may not lead to an
optimal overall solution, we follow all such paths that might bring us to the
optimum. Of course, this is feasible only if there are not too many paths to
examine.

It is very rewarding to learn this technique. Whereas greedy algorithms
work only for relatively few problems, dynamic programming has consider-
ably more applications. Our examples are taken from different domains.

Explaining Dynamic Programming Algorithms

Look again at the algorithm description in the previous section. It consists
of twp parts: (1) Defining the objective value. (2) Computing the objective
value. Note that these are two different activities!

When you explain an own dynamic programming algorithm, make sure
that you write down also part (1), since otherwise it is (in general) not clear
what you want to compute in part (2), let alone verification of correctness.

For example, assuming that p(j) is defined, would you understand with
ease what “OPT (j) = max{OPT (j − 1), OPT (p(j)) + vj}” does, without
being told before that OPT (j) is supposed to be “the maximum weight that
can be achieved by selecting a subset of disjoint intervals from the first j
intervals”?

More generally, all newly introduced methematical symbols must be de-
fined before they are used. (Otherwise, how does the poor reader know what
they mean?) This should be obvious, but is easy to forget.

4



Problem: Knapsack

Given: a knapsack of capacity W , and n items, where the ith item has size
(or weight) wi and value vi.

Goal: Select a subset S of these items that fits in the knapsack (i.e., with∑
i∈S wi ≤W ) and has the largest possible sum of values v =

∑
i∈S vi.

Motivations:

• Packing goods of high value (or high importance) in a container.

• Allocating bandwith to messages in a network.

• Placing files in fast memory. The values indicate access frequencies.

• In a simplified model of a consumer, the capacity is a budget, the
values are utilities, and the consumer asks himself what he could buy
to maximize his happiness.

Problem: Subset Sum

Given: n numbers wi, (i = 1, . . . , n) and another number W . (All wi are
positive, and not necessarily distinct.)

Goal: Select a subset S of the given numbers, such that
∑

i∈S wi is as large
as possible, but no larger than W . In particular, find out whether there is
even a solution with

∑
i∈S wi = W .

Motivations:

• This is a special case of the Knapsack problem where vi = wi for all i.
The goal is to make use of the capacity as good as possible.

• Manufacturing: Suppose that we want to cut up n pieces of lengths wi

(i = 1, . . . , n), and among our raw materials there is a piece of length
W . How can we cut off some of the desired lengths, so that as little
as possible of this raw material is left over?

5



Appendix

Calculation Example for Weighted Interval Scheduling

Suppose that we are given six intervals with these start points (s), end points
(f), and values (v).

i s(i) f(i) v(i)
1 0 3 2
2 1 5 4
3 4 6 4
4 2 8 7
5 7 9 2
6 7 9 1

They are already sorted by their end points. First we compute the
auxiliary values p(i). We just go through the list sorted by their start(!)
points and count how many interval are already finished when a new interval
begins. This way we get p(1) = p(2) = p(4) = 0, as interval 4 still begins
earlier than the first interval ends. Next the counter increases to 1, thus
we continue with p(3) = 1. Until the start of the last intervals, two further
intervals end (namely intervals 2 and 3), hence the counter goes up to 3,
and p(5) = p(6) = 3. The results are inserted in the table:

i s(i) f(i) v(i) p(i)
1 0 3 2 0
2 1 5 4 0
3 4 6 4 1
4 2 8 7 0
5 7 9 2 3
6 7 9 1 3

Now we can apply the formula to compute the optimal values.
OPT (0) = 0
OPT (1) = 2
OPT (2) = max{OPT (1), OPT (0) + 4} = max{2, 0 + 4} = 4
OPT (3) = max{OPT (2), OPT (1) + 4} = max{4, 2 + 4} = 6
OPT (4) = max{OPT (3), OPT (0) + 7} = max{6, 0 + 7} = 7
OPT (5) = max{OPT (4), OPT (3) + 2} = max{7, 6 + 2} = 8
OPT (6) = max{OPT (5), OPT (3) + 1} = max{8, 6 + 1} = 8

Finally the backtracing can start. We have obtained OPT (6) = 8, since
8 > 6 + 1. Thus, interval 6 is not in the final solution. Rather, we took the
solution from OPT (5). We have obtained OPT (5) = 8, since 7 < 6 + 2.

6



Thus, interval 5 is in the final solution, together with the intervals that
contributed to OPT (3), We have obtained OPT (3) = 6, since 4 < 2 + 4.
Thus, interval 3 is in the final solution, together with the intervals that
contributed to OPT (1), Clearly, the latter set consisits of interval 1 only.
Altogether, our solution is formed by intervals 1, 3, 5.

Learning styles are different. If it helps you seeing an algorithm in action,
in addition to the abstract reasoning, you are advised to implement some
dynamic programming algorithm(s), even though implementation is not the
focus of the course. As they typically consist of only a few for-loops, this is
not a huge amount of work. When you develop own dynamic programming
algorithms, you can then also test (but not prove!) that your idea works in
exactly the proposed way, or recognize that you forgot some cases, or did
other mistakes.

7


