
Algorithms. Lecture Notes 4

Dynamic Programming Algorithms for Subset Sum
and Knapsack

A new feature of the next examples of dynamic programming is that the
“dynamic programming function” has two parameters rather than one. For
some reason this is a quite typical case. We will also see that the function
is not always numerical; it can also have Boolean values, for example.

As an indication that dynamic programming (and nothing simpler) will
be needed for the Knapsack problem, we begin with a natural greedy algo-
rithm and a small but impressive counterexample where it miserably fails.
Since we have to pack as much value as possible in a limited space, it is
tempting to re-index the items such that v1/w1 ≥ v2/w2 ≥ . . . ≥ vn/wn and
take the items with the best value-to-size ratios until the knapsack is full.
However, consider the following instance, amazingly with only two items:
v1 = 10ε, w1 = ε, v2 = 90, w2 = 10, W = 10. The optimal solution is item 2
with value 90, but the above greedy algorithm would take item 1, and this
rules out the profitable item 2. By making ε > 0 arbitrarily small, we get ar-
bitrarily bad greedy solutions ... well, Let us turn to dynamic programming
instead.

First we consider the Subset Sum problem in the case when an exact
sum is required: Given numbers W and wi, i = 1, . . . , n, find a subset whose
sum is exactly W , or confirm that no solution exists. We assume that all
these numbers are integers. (Arbitrary rational numbers can be multiplied
with their greatest common divisor, without changing the problem.) It is
convenient to call W the capacity and to imagine that we pack items of sizes
wi in a knapsack.

An obvious idea for dynamic programming is: Consider the items in
the given order and decide whether to choose the jth item or not. But,
in contrast to Interval Scheduling, it is not enough to use j as the only
argument in our objective function. Our decisions influence the remaining
capacity, thus we must keep track of the capacity as well. Therefore we need
a second argument, and we define: P (j, w) = 1 if some subset from the first
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j items has the sum w, and P (j, w) = 0 else. Our function has Boolean
values 1 (true) and 0 (false). This is appropriate because there is nothing to
optimize here. In this problem we only want to know whether some solution
exists or not.

The only value that we eventually want is P (n,W ). Suppose that we
have already computed the P (i, y) for all i < j and y < w. If we do not
choose the jth item, we just copy the solution for j− 1. If we do choose the
jth item, the capacity used up before this step was by wi units smaller. Since
these are the only possible options, it is correct to compute each P (j, w) by
the following Boolean expression:

P (j, w) = P (j − 1, w) ∨ P (j − 1, w − wj).

As for the initialization, we have P (0, w) = 0 for all w > 0, and we have
P (j, 0) = 1 for all j, since the empty set is always a solution with sum 0.
We can also assume P (j − 1, w − wj) = 0 for w < wj , because no solution
with negative size exists.

The number nW of sub-instances to consider is reasonably small. In
every step we need to know which is the current item, and how much capacity
is already used, and this information is enough for making the remaining
choices.

The “art” of dynamic programming is to recognize such parameters that
limit the number of sub-instances to consider for the given problem. This
is the creative step which requires some problem analysis. But once we
have found suitable parameters, the development of the algorithm is usually
pretty straightforward.

Back to our problem: In the case that P (n,W ) = 1, we can reconstruct
a solution by backtracing (in the same way as earlier). The total time
complexity is O(nW ), since the computation of every P (j, w) needs O(1)
operations.

However, be aware that O(nW ) is not a polynomial time bound! Number
W is exponential in its description length, since we need only O(logW ) digits
to write W . Hence nW cannot be polynomially bounded in the instance
size. Still, if W < 2n then the dynamic programming algorithm is faster
than exhaustive search. The condition W < 2n is often satisfied in practical
instances.

Next we consider the more general optimization version of Subset Sum:
If no subset has exactly the desired sum W , compute a subset with the
largest possible sum below W . (“Pack a knapsack as full as possible.”) The
only new twist is that we must memoize the optimal sum rather than just
a Boolean value. Accordingly, we define OPT (j, w) as the largest number
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not exceeding w that can be obtained as a sum of values wi of some subset
of the first j items.

Without much further explanation it should be clear that:

OPT (j, w) = max{OPT (j − 1, w), OPT (j − 1, w − wj) + wj},

with the initialization OPT (0, w) = 0 for all w, and OPT (j, 0) = 0 for all
indices j. To take care of the case w − wj < 0 we can set OPT (j, y) = −∞
for all j and for all y < 0.

Now we are ready to solve the general Knapsack problem with sizes wj

and profit values vj , almost as a byproduct of our previous discussion. Define
OPT (j, w) to be the largest possible total value of a subset from the first j
items with total size at most w. Because only some minor modification is
needed, we give the resulting formula straight away:

OPT (j, w) = max{OPT (j − 1, w), OPT (j − 1, w − wj) + vj}.

Only one symbol has been replaced in the formula – isn’t that amazing?
Finally, consider a variant of the Knapsack problem where arbitrarily

many copies of every item are available. Surprisingly, yet another slight
modification of the recursive formula solves it immediately:

OPT (j, w) = max{OPT (j − 1, w), OPT (j, w − wj) + vj}.

Why is this correct? We leave it to you to think about it.
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Problem: Segmentation

This is a generic scheme of problems, rather than one specific problem. Let
f be some “easily computable” function that assigns a positive real number
to every possible sequence of items. These items can be numbers, characters,
or other objects.

Given: a sequence (x1, . . . , xn) of items.

Goal: Partition the sequence into segments (xi, . . . , xj) so that the sum of
the values f((xi, . . . , xj)) of all these segments is maximized/minimized.

Motivations:
f can be interpreted as a quality measure or a penalty for segments. Our

segmentation shall maximize the total quality, or minimize the penalty. We
mention a few concrete problem examples:

• Data analysis: A sequence of real numbers shall be partitioned into
segments that ascend or descend almost linearly. The penalty for every
segment is measured by the deviation from the closest linear function
(regression line) by, e.g., the sum-of-sqares error. (This problem is
treated in Section 6.4 of the textbook.)

• Parsing: A text without spaces shall be partitioned into words. The
penalty for a segment is, e.g., its edit distance to the most similar real
word in a dictionary.

Dynamic Programming for Segmentation Problems

We consider the penalty minimization version first. Let eij denote the
penalty for segment (xi . . . , xj) in the given sequence. Being already trained
in dynamic programming, we define OPT (j) to be the smallest possible sum
of penalties in a segmentation of (x1, . . . , xj). The last segment may start
at any position i ≤ j, therefore we have:

OPT (j) = min
i
OPT (i− 1) + eij ,

where the minimum is taken over all i with 1 ≤ i ≤ j. A new phe-
nomenon is that we make a multi-way choice in every step. The number
of cases is no longer constant, and it takes O(j) time to evaluate every
OPT (j). Thus, the time complexity is O(n2), plus the time for computing
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all eij . It depends on the penalty function how difficult these computations
are.

In enhanced versions of segmentation problems, only some maximum
number of segments may be allowed in a segmentation. Then, our dynamic
programming formula needs a second parameter counting the segments we
have already used up.

Problem: Sequence Comparison (String Editing)

Given: two strings A = a1 . . . an and B = b1 . . . bm, where the ai, bj are
characters from a fixed, finite alphabet.

Goal: Transform A into B by a minimum number of edit steps. An edit
step is to insert or delete a character, or to replace a character with another
one.

The edit distance of A and B is the minimum number of necessary edit
steps. The problem can be reformulated as follows. We define a gap symbol
that does not already appear in the alphabet. An alignment of A and B is a
pair of strings A′ and B′ of equal length, obtained from A and B by inserting
gaps before, after or between the symbols. A mismatch in an alignment is a
pair of different symbols (real symbols or gaps) at the same position in A′

and B′. Then, our problem is equivalent to computing an alignment of A
and B with a minimum number of mismatches.

Generalized versions of the problem assign costs to the different edit
steps. The costs may even depend on the characters.

Motivations:

• Searching and information retrieval: Finding approximate occurrences
of keywords in texts. Keywords are aligned to substrings of the text.
Mismatches can stem from misspellings or from grammatical forms of
words.

• Archiving: If several, slightly different versions of the same document
exist, and all of them shall be stored, it would be a waste of space
to store the complete documents as they are. It suffices to store one
master copy, and the differences of all versions compared to this mas-
ter copy. The deviations of any document from the master copy are
described in a compact way by a minimum sequence of edit steps.

• Molecular biology: Comparison of DNA or protein sequences, searching
for variants, computing evolutionary distances, etc.
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Appendix: Subset Sum Calculation Example

Suppose that you pay small amounts of money by cash. In your pocket you
find some coins with (in this ordering) denominations 5, 2, 2, 1, 2 in the local
currency. With these coins you can pay every integer amount up to 12. The
important thing is not this small example as such, but the way the Subset
Sum algorithm solves it. Using the example, check your understanding of the
proposed dynamic programming algorithm for Subset Sum. Do you see how
the table was obtained, and what all the entries mean? Can you explain how
the algorithm (not you!) would find solutions, for instance, how it figures
out that 7 units can be paid by 5 + 2 or alternatively by 2 + 2 + 1 + 2?

- 0 1 2 3 4 5 6 7 8 9 10 11 12
- 1 0 0 0 0 0 0 0 0 0 0 0 0
5 1 0 0 0 0 1 0 0 0 0 0 0 0
2 1 0 1 0 0 1 0 1 0 0 0 0 0
2 1 0 1 0 1 1 0 1 0 1 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0
2 1 1 1 1 1 1 1 1 1 1 1 1 1

6


