
Algorithms. Lecture Notes 6

Solving a Special Type of Recurrences

It is time to provide some general tool for the time complexity analysis of
divide-and-conquer algorithms. Most of these algorithms divide the given
instance of size n in some number a of instances of roughly equal size, say
n/b, where a, b are constant integers. (The case a 6= b is quite possible.
For example, in binary search we had b = 2 but only a = 1.) These smaller
instances are solved independently and recursively. The conquer phase needs
some time, too. It should be bounded by a polynomial, otherwise the whole
algorithm cannot be polynomial. Accordingly we assume that the conquer
phase needs at most cnk steps, where c, k are other non-negative constants.
We obtain the following type of recurrence:

T (n) = aT (n/b) + cnk.

We remark that a ≥ 1, b ≥ 2, c > 0, and k ≥ 0. Also assume that
T (1) = c. This is probably not true for the particular algorithm to be
analyzed, but we can raise either T (1) or c to make them equal, which will
not affect the O-result but will simplify the calculations.

Since T (n) recurs to T (n/b), it is simpler to restrict attention first to
arguments n which are powers of b, say n = bm for integer m. Starting with
T (b0) = T (1) = c we can explicitly write down the T (bm) values step by
step, simply by applying the recurrence T (bm) = aT (bm−1) + cbmk:

T (b0) = c

T (b1) = c(a + bk)

T (b2) = c(a2 + abk + b2k)

T (b3) = c(a3 + a2bk + ab2k + b3k)
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Maybe these few steps are enough to see the general pattern. The expression
for general m is:

T (n) = cam
m∑
i=0

(bk/a)i

Formally this may be proved by induction on m. In this explicit form, T (n)
is merely a geometric sum. We will now simplify it, using the O-notation.
The ratio bk/a is decisive for the final result. Three different cases can
appear. Remember that n = bm, hence m = logb n, and recall some laws of
logarithms.

If a > bk then the sum is bounded by a constant, and we simply get

T (n) = O(am) = O(alogb n) = O(nlogb a).

If a = bk then the sum is m + 1, and a few steps of calculation yield

T (n) = O(amm) = O(nk log n).

If a < bk then only the mth term in the sum determines the result in O-
notation:

T (n) = O(am(bk/a)m) = O((bm)k) = O(nk).

These three formulae are often called the master theorem for recurrences.
So far we have only considered very special arguments n = bm. However,

the O-results remain valid for general n, for the following reason: The results
are polynomially bounded functions. If we multiply the argument by a
constant, then the function value is changed by at most a constant factor
as well. Every argument n is at most a factor b away from the next larger
power bm. Hence, if we generously bound T (n) by T (bm), we incur only
another constant factor. This demonstrates again the beauty of O-notation.

Most divide-and-conquer algorithms lead to a recurrence settled by the
master theorem. In other cases we have to solve other types of recurrences.
Approaches are similar, but sometimes the calculations and bounding argu-
ments may be more sophisticated. Therefore it is good that you have seen
the template.
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Problem: Sorting

Given: a set of n elements, where an order relation is defined, e.g., a set of
numbers, equipped with the natural ≤ relation. Comparison is assumed to
be an elementary operation, that is, any two elements can be compared in
O(1) time.

Goal: Output the n given elements in ascending order.

Motivations: obvious

Mergesort

One natural way to solve the Sorting problem is called Bubblesort: The
elements are stored in an array, and whenever two neighbored elements are
in the wrong order, we swap them. It can be easily shown that Bubblesort
needs O(n2) time, and it does not matter which wrong pairs are swapped
first.

Bubblesort is worst if many elements are far from their proper places,
because the algorithm moves them only to neighbored places in every step.
The Insertion Sort algorithm overcomes this shortage: It uses k rounds to
sort the first k elements (k = 1, . . . , n). To insert the (k + 1)st element
we search for the correct position, using binary search. Hence we need
O(n log n) comparisons in all n rounds. This seems to be fine. Unfortu-
nately, this result does not yet imply O(n log n) time! If we use an array,
we may be forced to move O(k) elements in the kth round, giving again an
overall time complexity of O(n2). Using a doubly linked list instead, we can
insert an element in O(1) time at a desired position, but now we cannot
apply binary search for finding the correct position, because no indices are
available. Without further tricks we have to apply linear search, resulting
once more in O(n2) time for all n rounds. One could implement Insertion
Sort with a dictionary data structure. This achieves O(n log n) time, how-
ever with an unnecessarily large hidden constant. As opposed to that, the
fastest sorting algorithms are genuine divide-and-conquer algorithms.

Mergesort divides the given set arbitrarily in two halves, sorts them
separately, and merges the two ordered sequences while preserving the or-
der. This conquer phase runs in O(n) time: We simply scan both ordered
sequences simultaneously and always move the currently smallest element
to the next position in the output sequence. The time complexity satisfies
the recurrence T (n) = 2T (n/2) + O(n), with solution T (n) = O(n log n).
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Mergesort has a particularly simple structure, but it is not the fastest
sorting algorithm in practice. The drawback is that it executes too many
copy operations besides the comparisons. Moreover, in every merging phase
on every recursion level it moves all elements of the merged subsets into a
new array. Thus, we also need extra memory, which can be another practical
obstacle in the case of large n.

There are several alternative algorithms for sorting which also need
O(n log n) time, but with different hidden constant factors. These factors
are hard to analyze theoretically, but some informal reasoning as above gives
at least some hints, and runtime experiments can figure out what is really
faster in practice.

Quicksort and Random Splitters

One of the favorable sorting algorithms is Quicksort. It needs only one
array of size n for everything, apart from a few auxiliary memory cells for
rearrangements. An algorithm with these properties is said to work in place,
or (Latin) in situ. Bubblesort is an in place algorithm as well, however a
slow one.

Quicksort divides the given set according to the following idea. Let p
be some fixed element from the set, called a splitter or pivot. Once we
have put all elements < p and > p, respectively, in two different subsets, it
suffices to sort these two subsets independently. Then, just concatenating
the sorted sequences, with the splitter in between, gives the final result.
Thus the conquer phase is trivial here.

What makes Quicksort quick is the implementation details of the divide
phase: Two pointers starting at the first and last element scan the array
inwards. As long as the left pointer meets only elements < p, it keeps on
moving to the right. Similarly, as long as the right pointer meets only ele-
ments > p, it keeps on moving to the left. When both pointers have stopped,
we swap the two current elements. This requires only one additional mem-
ory cell where one element is temporarily stored. As soon as both pointers
meet, the set is divided as desired.

Clearly, the divide phase needs O(n) time. The hidden constant is re-
ally small due to the simple procedure. Moreovoer, we only have to move
elements being on the wrong side, and these can be much less than n.
What about the overall time complexity? If the splitters exactly halved
the sets on every recursion level, we would have our standard recurrence
T (n) = 2T (n/2) + O(n), with solution T (n) = O(n log n). Unfortunately,
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this is barely the case if we choose our splitters without care. In the worst
case, the splitter may even always be the minimum or maximum element of
the set, and then O(n2) time is needed. What can we do about that?

The ideal splitter for Quicksort would be the median, i.e., the element
being larger and smaller than exactly half of the elements in S. But how
difficult is it to compute the median? We could sort the set and then read
off the element with rank n/2. But this would be silly, because sorting was
the problem we came from.

Actually, Quicksort goes a different way. A splitter is selected at random!
(Indeed, an algorithm can make random decisions. This is not against the
general demand that an algorithm must be unambiguous and must not allow
for intervention. Random decisions are made by a random number generator
rather than by the user.) Now the worst case that the splitter is close to
the maximum or minimum is very unlikely. The splitters will mostly be
in the middle part of the sorted sequence, and then we get reasonably well
balanced partitionings in two sets. In fact, a strict analysis confirms that
O(n log n) time is needed on expectation. We do not give this analysis here,
as randomized algorithms are beyond the scope of this course.

The speed in practice is further improved by chosing three random el-
ements and taking their median as the splitter. This needs a few extra
operations, but much more operations are saved due to better partitionings.

Problem: Center of a Point Set on the Line

Given: n points x1, . . . , xn on the real line.

Goal: Compute a point x so that the sum of distances to all given points∑n
i=1 |x− xi| is minimized.

Motivations:
Imagine a village consisting of only one long street with n houses, with

irregular spaces in between. A building for a new shop shall be erected at a
“central” position in this street, that is, the average distance to the houses
shall be minimized.

The scenario becomes more interesting in a usual “2-dimensional” vil-
lage. However, for simplicity let us assume that streets go only in north-
south and west-east direction, this road network is complete, and houses
stand somewhere in these streets. What would now be the ideal position
for the shop, if minimizing the average distance to all houses is the only
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criterion? (Here, distances are understood as walking or driving distances
along the streets, not as Euclidean distances.)

More complicated (and more realistic) facility location problems with
various objectives appear in infrastructure planning.

Problem: Selection and Median Finding

Given: a set of n elements, where an order relation is defined, and an
integer k.

Goal: Output the element of rank k, that is, the kth smallest element.

If k = n/2 (rounded), we call the kth smallest element the median. The
term “Selection problem” is a bit unspecific but established. The problem
is also called Order Statistics.

Motivations:
In statistical investigations, the median is often better suited as a “typ-

ical” value than the average, because it is robust against outliers. For ex-
ample, the average wealth in a population can raise when only a few people
become extremely rich. Then the average gives a biased picture of the wealth
of the majority. This does not happen if we look at the median. Changing
the median requires substantial changes of the wealth of many people.

More generally speaking, median values, or values with another fixed
rank, are often used as thresholds for the discretization of numerical data,
because the sets of values above/below these thresholds have known sizes.

We remark that, once we know the kth smallest element, we can also find
the k smallest elements in another O(n) steps, just by n− 1 comparisons to
the rank-k element.

Algorithms for Selection and Median Finding

First we remark that the solution to the “Center of a Point Set on the Line”
problem is the median of the given coordinates, and not the average. (Why?
Think about it.)

Surprisingly, the Selection problem can be solved without sorting, in
O(n) time. The intuitive reason is that Selection needs much less informa-
tion than Sorting. Here is a fast algorithm. Again we choose a random
splitter p and compare all elements to p in O(n) time. Now we know the
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rank r of p. If r > k then we throw out p and all elements larger than
p. If r < k then we throw out p and all elements smaller than p, and set
k := k−r. If r = k then we return p. This procedure is repeated recursively.

If the splitters were always in the middle, the time would follow the re-
cursion T (n) = T (n/2) + O(n), with solution T (n) = O(n). Again, a prob-
abilistic analysis confirms an expected time O(n), whereas the worst case is
O(n2). There also exists a deterministic divide-and-conquer algorithm for
Selection, but it is non-standard and a bit complicated. More importantly,
its hidden constant in O(n) is rather large, making the algorithm more of
academic interest, while the random-splitter algorithm is practical.

Information Flow and Optimal Time Bounds

We conclude the discussion of Sorting and Selection with some remarks on
optimal time bounds. One of our general goals is to make algorithms as fast
as possible. So, how good are our time bounds?

In order to find a specific element in an ordered set we needed log2 n
comparisons of elements, by doing binary search. No other algorithm using
only comparisons as elementary operations can have a better worst-case
bound. This holds due to an information-theoretic argument explained as
follows. How much information do we gain from our elementary operations?
Every comparison gives a binary answer (“smaller” or “larger”), thus it
splits the set of possible results in two subsets for which either of the answers
is true. In the worst case we always get the answer which is true for the
larger subset, and this reduces the number of candidate solutions by a factor
at most 2. Since there were n possible solutions in the beginning, every
algorithm needs at least log2 n comparisons in the worst case.

The same type of argument shows that no sorting algorithm can succeed
with less than O(n log n) comparisons in the worst case: Since a set with
n elements can be ordered in n! possible ways, but only one of them is the
correct order, any sorting algorithm can be forced, by a nasty instance, to
use log2 n! comparisons. Some calculation shows that this is n log n, subject
to a constant factor. As we ignore such constants anyway, the proof is a
one-liner:

log2 n! =
n∑

k=1

log2 k ≥ (n/2) log2(n/2).
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This argument does not apply to the Selection problem: There we have
only n possible results, and log n is a very poor lower bound. In fact, O(n)
is the optimal bound, but for a totally different reason: We have to read all
elements, since every change in the instance can also change the result.

It should also be noticed that the information-theoretic lower bounds for
Sorting and Searching hold only under the assumptions that (1) nothing is
known in advance about the elements, and (2) doing pairwise comparisons is
the only way to gather information. Faster algorithms can exist for special
cases where we know more about the instance. For example, Bucketsort
works in O(m + n) time, if the n elements come from a fixed range of m
different numbers. Similarly, a set of words over a fixed alphabet can be
sorted in lexicographic order in O(n) time, where n is the total length of the
given words. These results do not contradict each other.

Problem: Counting Inversions

Given: a sequence (a1, . . . , an) of elements where an order relation < is
defined.

Goal: Count the inversions in this sequence. An inversion is a pair of
elements where i < j but ai > aj .

Motivations:
This problem is obviously related to sorting, but here the goal is only

to measure either the “degree of unsortedness” of a given sequence, or the
dissimilarity of two sequences containing the same elements but in different
order. One of them can be assumed to be (1, 2, 3, . . . , n), and the other
sequence is a permutation of it. One natural measure of unsortedness or
dissimilarity, among several others, is the number of inversions.

The problem appears, e.g., in the comparison of rankings (e.g., of web
pages returned by search engines), and in bioinformatics (measuring the
dissimilarity of two rearranged genome sequences).
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