Algorithms. Lecture Notes 7

An Algorithm for Counting Inversions

Next we want to count the number of inversions in a sequence, faster than by
the obvious O(n?) time algorithm. This problem example is instructive as
it combines divide-and-conquer with some general issue in algorithm design
(see below).

Due to the vague similarity to Sorting, it should be possible to ap-
ply divide-and-conquer. We could split the sequence in two halves, say,
A= (ay,...,ap) and B = (am41,--.,a,), where m =~ n/2, and count the
inversions in A and B separately and recursively. In the conquer phase we
would count the inversions between A and B, that means, those involving
one element in each of A and B, and sum up. But it is not easy to see how
to execute this conquer phase better than in O(n?) time. At this point we
need a creative idea.

Intuitively, it would be much easier to do the conquer phase when the
two halves were sorted. What if we also sort the sequence while counting
the inversions? This idea may appear counterintuitive: Sorting is not what
we originally wanted, and one might think that a problem becomes only
harder by extra demands. But in fact, sorting serves here as a tool to make
the conquer phase of another algorithm efficient! Figuratively speaking, our
inversion counting algorithm will be piggybacked by a recursive sorting algo-
rithm. That is, we extend our problem to Sorting and Counting Inversions,
and solve it recursively.

As the underlying sorting algorithm we take the conceptually simple
Mergesort. If we manage to merge two sorted sequences A and B, and si-
multaneously count the inversions between A and B, still everything in O(n)
time, then the recurrence T'(n) = 27'(n/2) + O(n) will apply. Remember
that its solution is T'(n) = O(nlogn).

In fact, this O(n) time merging-and-counting is easily done, using some
pointers and counters: We proceed as in Mergesort, and whenever the next



element copied into the merged sequence is from B, this element has inver-
sions with exactly those elements of A which are not visited yet. Hence we
only need O(n) additions of integers, on top of the copy operations.

Faster Multiplication

This is one of the most amazing classic results in the field of efficient algo-
rithms. Recall that the “school algorithm” for multiplication of two integers,
each with n digits, needs O(n?) time. For simplicity let n be a power of 2,
otherwise we may fill up the decimal representations of the factors with
dummy 0s. This “padding” can at most double the input size, hence the
(polynomial) time complexity is increased by some constant factor only.

An attempt to multiply through divide-and-conquer is to split the deci-
mal representations of both factors in two halves, and then to multiply them
with help of the distributive law:

(10" %w + 2)(10™2y + 2) = 10™wy + 10"2(wz + zy) + 2

That is, we reduce the multiplication of n-digit numbers to several multi-
plications of n/2-digit numbers and some additions. Then we apply the same
equation recursively to all the n/2-digit numbers. This algorithm satisfies
the recurrence T'(n) = 4T (n/2) + O(n), since additions and other auxiliary
operations cost only O(n) time. Factor 4 comes from the four recursive calls.
Note that only w, x,y, z are multiplied recursively, whereas multiplications
with powers of 10 are trivial: Append the required number of 0s. Since
2! < 4, the master theorem yields T'(n) = O(n'°824) = O(n?). ... Too bad!
Unfortunately, this is not an improvement.

Was this a futile approach? No, we have just failed to fully exploit the
power of the idea. The key observation suggesting that the usual algorithm
might be unnecessary slow was that it executes the same multiplications
of digits many times. Simple geometry gives an idea how to save one of
the four recursive multiplications: Consider a rectangle with side lengths
w+ 2 and y + z. We need the area sizes of three parts of this rectangle:
zz,wy,wz + xy. The last term is not the area of a rectangle, but looking at
the the whole rectangle we see that

(w+z)(y+2) =wy+ (wz +zy) + 2



Hence we obtain the desired numbers by only three multiplications:
(w+z)(y+ 2), wy, and xz. The term wz + zy is obtained by subtractions,
which are cheaper than another multiplication. Altogether we need only
T(n) = 3T(n/2) + O(n) time, which yields T((n) = O(n'%823) = O(n!5).
This is indeed considerably better than O(n?).

A minor remark is that this analysis was not completely accurate: The
factors w+x and y+ z can have n/2+ 1 digits. But then we can split off the
first digit, which gives us recursive calls to instances with (now accurately)
n/2 digits, plus some more O(n) terms in the recurrence which do not affect
the time bound in O-notation. Hence this minor technicality can be easily
fixed.

But now, why don’t we use this clever algorithm in everyday applica-
tions? It must be confessed that the acceleration takes effect only for rather
large n (more than some 100 digits). The main reason is the administrative
overhead for the recursive calls. The simple traditional algorithm does not
suffer from such overhead. Multiplication by divide-and-conquer is not suit-
able for numerical calculations, since the factors have barely more than a
handful digits. Still the algorithm is not useless. Some cryptographic meth-
ods rely on the fact that integers are easy to multiply but hard to split into
their prime factors. These methods use multiplications of large numbers.
They have no numerical meaning but encode messages and secret keys in-
stead. In such applications, n is large enough to make the asymptotically
fast algorithm really fast also in practice.

The above algorithm is not yet the fastest known multiplication algo-
rithm. An O(nlognloglogn) time algorithm is based on convolution via
Fast Fourier Transformation, but this is beyound the scope of this course.
It is not known whether one can multiply even faster.

Finally we mention that similar divide-and-conquer algorithms exist also
for matrix multiplication, with similar provisoes. Very large matrices can
appear in calculations and simulations in mechanics or economy.

Problem: Closest Points

Given: a set of n points in the plane, specified by their Cartesian coordi-
nates (x;, yi).

Goal: Find a pair of points with minimum Euclidean distance (i.e., the
usual distance in the plane, which is the length of the straight line segment
connecting the points).



Motivations:

Some approaches to hierarchical clustering of data take the two closest
data points and combine them to a cluster by replacing these two points by
their midpoint, and this step is repeated until one cluster remains.

Divide-and-Conquer in Geometry: Closest Points

Fast geometric calculations are needed in computer graphics, computer-
aided design, robotics, planning (transport optimization, facility location),
chemistry (modelling molecules and their dynamics), for extracting informa-
tion from geographic databases, etc. The amount of data can be huge (e.g.,
elements of a picture), such that efficient algorithms make a difference.

Divide-and-conquer is suitable for various geometric problems, because
instances can be divided in a natural way. However, the conquer phase
is usually less trivial. To give at least an impression, we discuss another
geometric problem example: finding a pair of closest points among n given
points in the plane.

An obvious algorithm would compute all pairwise distances and deter-
mine the minimum in O(n?) time. Instead, we aim at a divide-and-conquer
algorithm satisfying the recurrence T'(n) = 27'(n/2)+O(n), hence with time
complexity T'(n) = O(nlogn).

It is natural to divide the set by a straight line. To make the calculation
details simple, we first sort the points by their z-coordinates, and then halve
the set by a vertical separator line. More formally, we take the median z of
all z-values and put all points with coordinate z < z and x > z, respectively,
in the two sets. Sorting takes O(nlogn) time and needs to be done only
once in the beginning, which does not destroy the desired time bound.

Then, of course, we compute the closest pairs in both subsets recursively.
Let d be the minimum of the two minimum distances. The more tricky part
is to combine the partial solutions. The global solution could be the best of
the two closest pairs from the two subsets, but there could also exist a pair
of points with distance smaller than d, having one point on each side of the
separator line. But now some geometry helps:

The candidates for such pairs of points are in a stripe of breadth d around
the separator line. Moreover, each point has only constantly many partners
(at distance smaller than d) on the other side, hence only O(n) such pairs of
close points must be considered. These pairs can be identified in O(n) time,
if all points are already sorted by their y-coordinates as well. With careful



Figure 1: This is why the conquer phase needs only O(n) time. Pairs with
points on both sides of the separating line can only be taken from a stripe
of breadth 2d. For clarity, let us partition this stripe into squares with side
length d. Since the points on each side must keep a distance at least d (yes,
the points must keep some distance, too, not only people ...), there can be
only one or two points in every square. Moreover, we need to measure the
distances of points only in incident squares, since other points are clearly
too far away. These are O(1) candidate partners for each point. Once we
have sorted the y-coordinates in the beginning (not during the recursion!),
we only have to traverse some sorted list of points.

implementation details (that we omit here), all steps in the conquer phase
run in O(n) time as desired.



