
Algorithms. Lecture Notes 8

Reductions between Problems

In general, any new problem requires a new algorithm. But often we can
solve a problem X using a known algorithm for a related problem Y . That
is, we can reduce X to Y in the following informal sense: A given instance
x of X is translated to a suitable instance y of Y , such that we can use the
available algorithm for Y . Eventually the result of this computation on y is
translated back, such that we get the desired result for x. Does this sound
too abstract? Here we illustrate the idea by an example:

Suppose that we want an algorithm for multiplying two integers, and
there is already an efficient algorithm available that can compute the square
of one integer. It needs S(n) time for an integer of n digits. Can we use
it somehow to multiply arbitrary integers a, b efficiently, without developing
a multiplication algorithm? These assumptions are a bit made up, but we
will see below that the example is meaningful. We do not have to specify
the function S, but it is clear that S(n) ≥ n. (Why?)

Certainly, squaring and multiplication are closely related problems. In
fact, we can use the identity ab = ((a + b)2 − (a − b)2)/4. We only have
to add and subtract the factors in O(n) time, apply our squaring algorithm
in S(n) time, and divide the result by 4, which can be easily done in O(n)
time, since the divisor is a constant.

Thus we have reduced some problem X (multiplication) to some problem
Y (squaring). Namely, we have taken an instance of X (the factors a and b),
transformed it quickly into two instances of Y (with operand a+b and a−b,
respectively), solved these instances of Y by the given squaring algorithm,
and finally applied another fast computation to the results (an addition, and
a division by 4) to obtain the solution ab to the instance of problem X.

It is crucial that not only a fast algorithm for Y is available, but the
transformations are fast as well. Note that the total time for our multipli-
cation algorithm is O(S(n)). The O(n)-time transformations are already

1

counted in this time bound.
Doing multiplication through an algorithm specialized to squaring may

appear somewhat strange. But we get an interesting insight from this re-
duction: One might conjecture that squares can be computed faster than
products of arbitrary numbers, since this problem is only a very special case
of multiplication. In fact, in applications with a lot of squarings (simulations
of physical systems?) it would be nice to have such a faster algorithm. But
due to our reduction, these hopes come to nothing, and we can firmly give
a negative answer: Any faster algorithm for squaring would immediately
yield a faster algorithm for (general) multiplication as well. We conclude
that squaring is not easier than multiplication!

We have identified two different purposes of reductions: (1) solving a
problem X with help of an already existing algorithm for a different problem
Y , and (2) showing that a problem Y is at least as difficult as another
problem X.

Note that (1) is of immediate practical value, and even usual business:
Ready-to-use implementations of standard algorithms exist in software pack-
ages and algorithm libraries. One can just apply them as black boxes, by
using their interfaces, and without caring about their internal details. For-
mally this is nothing but a reduction! Point (2) might appear less practical,
but it gives us a way to compare the difficulty of problems without determin-
ing their “absolute” time complexities (which is often impossible to figure
out). It can be useful to know such comparisons, If Y is at least as difficult
as X, then research on improved algorithms should first concentrate on the
easier problem X. Some applications (as in cryptography) even rely on the
hardness of certain computational problems, rather than efficient solvability.

Reductions – Now More Formally

After this informal introduction we approach the abstract definitions of re-
ductions that are needed to build up a complexity theory of computational
problems.

Let X,Y be any two problems. By |x| we denote the length of an instance
x of problem X. We say that X is reducible to Y in t(n) time, if we can do
the following in t(n) time for any given instance x with |x| = n: Transform
x into an instance y = f(x) of problem Y , and transform the solution of y
back into a solution of x.

Symbol f merely denotes the function describing how an instance is

2

transformed. It must be computable in t(n) time. Note that the time
needed by the algorithm for problem Y is not counted in t(n). Only the
transformations of instances and solutions are charged, because these are
the extra costs for using the algorithm for Y , so to speak. According to
the very idea of reductions, the solution algorithm for Y is not part of the
reduction. In other words, a reduction is merely an “affair bwtween two
problems”.

Assuming that we have an algorithm for problem Y with time bound
u(n), we can now solve an instance x of problem X in time t(|x|)+u(|f(x)|).
Since |f(x)| ≤ t(n) (why?), this is bounded by t(n) + u(t(n)).

Loosely speaking we can conclude: If Y is an easy problem and the
reduction is fast, then X is an easy problem, too. Conversely, if X is a
hard problem, and we have a fast reduction to problem Y , then Y is a hard
problem, too. In this sense, a reduction allows a comparison of the difficulty
of two problems.

These comparisons become much easier to handle formally when we re-
strict attention to so-called decision problems. A decision probem is
simply a computational problem that has to output a Yes or No answer
(e.g., the instance has a solution or not). This is not a severe restriction.
Every optimization problem can be viewed as a series of decision problems,
as follows. Instead of asking “give me a solution where the objective value
is minimized” we can ask “does there exist a solution with objective value
at most t?”, for various thresholds t. Informally, if the optimization prob-
lem is easy to solve, then the corresponding decision problem is also easy,
for every threshold t. (We just compare an optimal solution to the thresh-
old.) By contraposition, if already the decision problem is hard, then the
corresponding optimization problem is also hard.

Finally we define reductions between decision problems X and Y : We
say that X is reducible to Y in t(n) time, if we can compute in t(n) time,
for any given x with |x| = n, an instance y = f(x) of Y such that the
answer to x is Yes if and only if the answer to y is Yes. (In other words,
instances x, y of the decision problems X,Y are equivalent.) If the time t(n)
needed for the reduction is bounded by a polynomial in n, we say that X is
polynomial-time reducible to Y .

3

Problem: Clique

A clique in a graph G = (V,E) is a subset K ⊆ V of nodes such that all
possible edges in K exist, i.e., there is an edge between any two nodes in K.

Given: an undirected graph G.

Goal: Find a clique of maximum size in G.

Motivations:
This is a fundamental optimization problem in graphs. Many other

problems can be rephrased as a Clique problem. A setting where it appears
directly is the following: The graph models an interaction network (persons
in a social network, proteins in a living cell, etc.), where an edge means some
close relation between two “nodes”. We may wish to identify big groups of
pairwise interacting “nodes”, because such groups may have an important
role in the network.

Problem: Independent Set

An independent set in a graph G = (V,E) is a subset I ⊆ V of nodes
such that no edges in I exist.

Given: an undirected graph G.

Goal: Find an independent set of maximum size in G.

Motivations:
The same general remarks as for the Clique problem apply. A setting

where it appears directly is the following: The graph models conflicts be-
tween items, and we wish to select as many as possible items conflict-free.
For example: Goods shall be packed in a box, but for security reasons cer-
tain goods must not be packed together. How many items can we put in the
same box?

Problem: Vertex Cover

A vertex cover in a graph G = (V,E) is a subset C ⊆ V of nodes such
that every edge of G has at least one of its two nodes in C.

4

Given: an undirected graph G.

Goal: Find a vertex cover of minimum size in G.

Motivations:
Vertex covers are of interest in “facility location” problems. A toy ex-

ample is the question: How can we place a minimum number of guards in a
museum building so that they can watch all corridors?

Another application field is combinatorial inference. As a bioinformatics
example, consider some genetic disease that appears if some rare bad variant
of a certain gene is present. Geneticists want to figure out what the bad
gene variants are. Their number is expected to be small, as a result of a few
unfortunate mutations. Every person carries two copies of the gene. Given
the genetic data of a group of persons having the disease, we know that each
person has at least one bad variant in his/her pair of genes. Now we can try
and explain the data by a minimum number of different bad gene variants.

Reductions Between Some Graph Problems

We illustrate the definition of polynomial-time reducibility by some simple
reductions between the mentioned graph problems, reformulated as decision
problems. Let G = (V,E) be an undirected graph. The Clique problem
takes as input a graph G and an integer k and asks whether G contains a
clique of at least k nodes. The Independent Set problem takes as input a
graph G and an integer k and asks whether G contains an independent set
of at least k nodes.

It is rather obvious that Clique and Independent Set are only different
formulations of the same problem. To make this precise, we show that Clique
and Independent Set are polynomial-time reducible to each other. A reduc-
tion function is established by f(G, k) := (Ḡ, k), where Ḡ is the complement
graph of G, that is, the graph obtained by replacing all edges with non-edges
and vice versa. Regarding the formalities, note that f has to transform an
instance of a problem into an instance of the other problem, and an instance
consists here of a graph G and an integer k. The transformation is obviously
manageable in polynomial time.

The Vertex Cover problem takes as input a graph G and an integer k and
asks whether G contains a vertex cover of at most k nodes. We show that
Independent Set and Vertex Cover are polynomial-time reducible to each
other. The key observation is that C ⊆ V is a vertex cover if and only if

5

V \C is an independent set. In other words, vertex covers and independent
sets are complement sets in the same graph. Hence, a vertex cover of size at
most k exists if and only if an independent set of size at least n − k exists
(and similarly in the other direction). This gives us a possible reduction:
f(G, k) := (G,n − k). This time we did not change the graph. The only
work of the reduction function is to replace the threshold k with n− k.

These very simple reductions show that all three problems are essentially
the same. In particular, they are equally hard.

If a problem X is merely a special case of problem Y , we immediately
have a polynomial-time reduction from X to Y . To give an example: Inter-
val Scheduling is a special case of Independent Set, which is seen as follows.
Given a set of intervals, we construct a graph with the given intervals as
nodes, where two nodes are adjacent whenever the represented intervals in-
tersect. We call it the interval graph of the given set of intervals. The
decision version of Interval Scheduling is: Given a set of intervals and an
integer k, does there exist a subset of at least k pairwise disjoint inter-
vals? Now it should be clear that the above graph construction is, in fact,
a polynomial-time reduction from Interval Scheduling to Independent Set.
The function f describing this reduction transforms the set of intervals into
its interval graph, while k remains unchanged.

Note that we cannot reduce Independent Set to Interval Scheduling in
the same way. The catch is: Starting from an arbitrary graph G, we cannot
always find a set of intervals whose interval graph is exactly G. This is
because “most” graphs are not interval graphs. But maybe there exists
some non-obvious and tricky reduction nevertheless? Later we will be able
to rule out this possibility, too.

Complexity Classes and Hardness

Comparisons by polynomial-time reducibility define a partial ordering on the
class of decision problems, with respect to their complexities: This relation
is transitive, that is, if X is polynomial-time reducible to Y , and Y is
polynomial-time reducible to Z, then X is polynomial-time reducible to Z.
This is not surprising and almost obvious, but we must be a little bit careful
with the time bounds.

To prove transitivity, let f and g be the functions transforming the
instances from X to Y and from Y to Z, respectively. Let f and g be
computable in time p and q, respectively, where p and q are polynomials. In

6

order to solve an instance x of X (of size n) with the help of an algorithm
for Z, we can compute instance g(f(x)) of Z, and then run the available
algorithm. The time needed for the reduction is p(n) + q(p(n)). Note that
we can bound the input length |f(x)| in the second term only by p(n), since
the transformation algorithm that computes f(x) can use p(n) time, and it
may use this time to generate such a long instance. However, since p, q are
polynomials, q(p(n)) is still a polynomial in n, hence the entire reduction
from X to Z is polynomial. Also note that the instances x and g(f(x)) are
in fact equivalent.

The “bottom” of the mentioned partial ordering of problems compared
by their complexities is the class of “easy” problems. We pointed out ear-
lier that efficient algorithms should need polynomial time. Accordingly, we
define the complexity class P to be the class of all decision problems that
admit an algorithm which solves every instance x correctly and in O(p(n))
time, where p is some polynomial, and n denotes the size of x. Note that p
may depend on the problem, but not on n.

If a given problem X is quickly reducible to an easy problem, then prob-
lem X is easy, too. Formally, if a decision problem X is polynomial-time
reducible to a decision problem Y ∈ P, then X ∈ P.

The proof is similar to the transitivity proof: Let p be the polynomial
time bound for computing the function f which reduces X to Y , and let t be
the polynomial time bound of an algorithm for problem Y . (Now we have to
count in the time used by this target algorithm.) Given an instance x of X,
with size |x| = n, we compute f(x) and solve instance f(x) by the algorithm
for Y . Now the time bound is p(n) + t(p(n)), and this is polynomial in n.

Interestingly, the contraposition says: If X is polynomial-time reducible
to Y , and X is not in P, we can conclude that Y is not in P either! Thus,
reductions allow us to prove hardness of many problems, once we know some
hard problem to start with. But can we actually prove that some particular
problem is not in P? At least, many natural problems are suspected to
be hard in this sense. No polynomial-time algorithms are known for them.
Many graph problems are of this type, and also the Knapsack problem.
(Remember that our dynamic programming algorithm for Knapsack was
not polynomial in the input length!) They seem to resist all our techniques
to create fast algorithms. We have no clue how a correct solution to an
instance could be built up from solutions to smaller instances in an efficient
way. You are welcome to try, but you will always get stuck at some point.
Maybe the methods we have learned are too weak for these problems, or too
much ingenuity is needed to find the right way of applying the techniques?

7

The question is: Are we not smart enough, or are the problems intrinsically
hard, i.e., outside the class P? In the following we give a cautious “negative”
answer.

The Notion of NP-Completeness

Almost all “natural” algorithmic decision problems belong to a certain class
of problems that includes P but is apparently larger. Below we introduce
this larger complexity class.

It is common to our problems that we can easily verify (confirm, certify)
solutions that are already given. For example, consider the decision version
of Knapsack: Given n items, their weights and values, a capacity W , and a
desired total value k, the question is whether some subset of items with total
weight no larger than W has a total value of at least k. If somebody supplies
us with a solution, we can easily check in polynomial time whether this is
in fact a solution: We simply have to add and compare some numbers. Or
consider the Independent Set problem: Given a graph and a number k, we
can check in polynomial time whether a given subset I of nodes is a valid
solution: Count the nodes in I, compare their number to k, and verify for all
pairs of nodes u, v ∈ I that u, v are not joined by an edge. For virtually every
natural decision problem we can similarly check an already given solution
in a short time.

The complexity class NP is defined as the class of all decision problems
which admit an algorithm that can verify every Yes-instance in polynomial
time, provided that some “advice” is given, in addition to the input. This
“advice” is usually just a solution to the problem instance. In this (typical)
case we can say more simply that the mentioned algorithm must verify a
given solution in polynomial time.

Some comments on this definition are in order. The verification algo-
rithm is not supposed to solve the problem, at least, not in polynomial time.
Moreover, the definition does not say how the solution is obtained (exhaus-
tive search, a good guess, etc.). It is only concerned with the verification of
an already available solution. The abbreviatiom NP stands for nondeter-
ministic polynomial, which refers to the interpretation that we may have
guessed a solution.

We have P ⊆ NP. Namely, if we can even solve a problem correctly in
polynomial time then, trivially, we can also verify in polynomial time that
an instance has a solution.

8

As said above, almost every natural, relevant computational problem be-
longs to NP, and we have that P ⊆ NP. Is this inclusion strict?! It would
be nice to know P = NP, since this would mean that all these problems
are solvable in polynomial time. Unfortunately, the question is open. More-
over, this is perhaps the most famous open question in Computer Science.
Nevertheless we can shed some light on this so-called P-NP question and
classify certain problems as “hard”. Recall that reductions can be used to
compare the difficulty of problems. Now we arrive at the central definition:

A decision problem Y ∈ NP is said to be NP-complete if every (!)
problem X ∈ NP is polynomial-time reducible to Y . Informally speaking,
NP-complete problems are the hardest problems in NP. We can charac-
terize their hardness as follows:

No NP-complete problem belongs to P, unless P = NP. Assume for
contradiction that some Y ∈ P is NP-complete. Then, by definition, all
X ∈ NP are polynomial-time reducible to Y . But since Y ∈ P, this implies
X ∈ P for all X ∈ NP.

To summarize what we have shown: It is open whether P = NP or not,
but if not, then no polynomial-time algorithm can exist for NP-complete
problems. Since until now nobody could find a fast algorithm for any such
problem despite decades of intensive research, it is generally believed that
P 6= NP, and hence all NP-complete problems are really hard.
NP-completeness of any specific problems can be proved via reductions

from other such problems, due to the following theorem: If problem Y is
NP-complete and polynomial-time reducible to Z ∈ NP, then Z is also
NP-complete. This follows immediately from the definition and from the
transitivity of polynomial-time reducibility.

Problem: Satisfiability (SAT)

A Boolean variable has two possible values: True (1) or False (0). A
literal is either a Boolean variable x or its negation ¬x. A Boolean for-
mula is composed of literals joined by operations AND (conjunction, ∧),
OR (disjunction, ∨), and perhaps further negations. An assignment gives
a truth value to every variable in a Boolean formula. An assignment is said
to be satisfying if the formula evaluates to 1. A clause is a set of literals
joined by OR. Note that “if-then” conditions can be rewritten as clauses.
A Boolean formula is in conjunctive normal form (CNF) if it consists
of clauses joined by AND. We remark that every Boolean function can be

9

written equivalently as a CNF formula.

Given: a Boolean formula, either in general form or in CNF.

Goal: Find a satisfying assignment (if there exists some).

Motivations: This is a fundamental problem in logic and related fields like
Artificial Intelligence. The following is only an example of a more concrete
application scenario.

Certain objects can be described as vectors of Boolean variables, where
each variable indicates whether the object has a certain property or not.
Suppose that the properties of many objects are stored in a database. Now
we want to retrieve an object that satisfies a given set of conditions, ex-
pressed as clauses. Before we process an expensive database query, it may
be good to check whether the conditions are satisfiable at all, because the
given specification may be overconstrained. Furthermore, if the result is
positive, we may search the database for occurrences of the satisfying as-
signments, which is much faster and simpler than testing the conditions
for each database entry. (However, the speed depends on the number of
satisfying assignments we have to try.)

Appendix

NP Quiz: True or False? (And Why?)

The remarks in the Appendix of Lecture Notes 1 apply also here.

• Consider the following problem. Given three integers x, y, k, decide
whether the k-th digit of the product xy, in binary representation,
equals 1. Claim: “This problem is in P.”

• “The problem in the previous question is in NP.”

• “If an optimization problem is in NP (more precisely: if the corre-
sponding decision problem is in NP), then we can verify in polynomial
time that a given optimal solution is, in fact, optimal.”

10

