
Algorithms. Lecture Notes 9

The “First” NP-Complete Problem

Still we have not seen any single NP-complete problem which could be a
starting point for reductions. For one problem, NP-completeness must be
proved directly by recurring to the definition. Historically, the first NP-
complete problems came from logic: the Satisfiability (SAT) problem for
logical formulae (or circuits). The difficulty of SAT, even when restricted
to CNF formulae, can be intuitively explained as follows: We may set any
variable to 1 in order to satisfy some clause, but the same variable may
appear in negated form in other clauses, and then we cannot use it anymore
to satisfy these other clauses. Any decisions on the truth value of some
variable in a clause restrict the possibilities of satisfying other clauses. This
may end up in conflicts where some clause is no longer satisfiable. Then we
have to try other combinations of values, etc. In fact, nobody knows how
to solve SAT in polynomial time.

Clearly, SAT belongs to NP: If someone gives us a satisfying truth
assignment, we can confirm in linear time (in the size of the formula) that
it really satisfies the formula. But SAT is probably not in P. A theorem
due to S. Cook says that SAT is NP-complete, even for CNF as input.

The proof is long and very technical, but one can give the rough idea
in a few sentences: We have to show that any decision problem X ∈
NP is polynomial-time reducible to SAT. Since X ∈ NP, there exists a
polynomial-time algorithm that checks the validity of a given solution to
an instance x of X. Like every algorithm, it can run on a machine that
performs only extremely simple steps, so simple that the internal state of
the machine at any time (contents of memory cells etc.) can be described
by Boolean variables. A Boolean formula in CNF, of size polynomial in |x|,
describes the steps of the computation. This CNF is built in such a way
that a satisfying truth assignment corresponds to the successful verification
of a solution to x. Hence, the whole construction reduces X to SAT in poly-
nomial time. – We emphasize that this was only a brief sketch of the proof.

1

Don’t worry if you find it cryptic. We only need the statement of Cook’s
theorem, but not its proof.

A side remark: Without Cook’s theorem it would not even be clear
that NP-complete problems Y exist at all! Remember that the definition
requires that all problems of the class are reducible to Y , which is a strong
demand. This is also the reason for introducing the “strange” class NP:
The considered problems must be limited somehow, but to some class that
is still large enough to capture most of the relevant computational problems.

3SAT is as Hard as SAT

Surprisingly, some further restriction does not take away the hardness of the
SAT problem: A kCNF is a CNF with at most k literals in every clause.
kSAT is the SAT problem for kCNF formulae. We show that 3SAT is
still NP-complete, by a polynomial-time reduction from the (more general!)
SAT problem for arbitrary CNF.

This reduction is best described by an iterative algorithm doing the
transformation. Given a CNF, we do the following as long as some clause
C with more than 3 literals exists: We split the set of literals of C in two
shorter clauses A and B, append a fresh variable u to A and ū to B. A fresh
variable means that u must not occur in any other clause. It is easy to see
that (A ∨ u) ∧ (B ∨ ū) is satisfiable if and only if C = A ∨ B is satisfiable.
Similarly, the entire formula is satisfiable before the modification if and only
if it is satisfiable after the modification. Hence we have got an equivalent
instance of the problem. After a polynomial number of steps we are down
to a 3CNF.

Stop! It is not completely obvious that the number of steps is bounded by
a polynomial. One needs an argument for that. Here is one possibility. We
have not epecified exactly how the literals of C are divided in two graoups.
We can always put exactly 2 literals in A and the rest in B. Then (A ∨ u)
has exactly 3 literals, and (B ∨ ū) is strictly shorter than A ∨B. Hence we
have strictly decreased the total length of the long clauses with more than
3 literals. This can happen only linearly many times.

We can also get rid of clauses with 1 or 2 literals in a polynomial number
of steps. Namely, ee can make a clause A artificially longer, similarly as
above: Take a fresh variable u and replace A with (A ∨ u) ∧ (A ∨ ū), this
time without splitting the clause. It follows that the version of 3SAT with
exactly 3 literals per clause remains NP-complete.

Next, what about 2SAT? The above reduction cannot produce an equiv-

2

alent 2CNF. (Do you see why not?) Actually, 2SAT is in P. It can even be
solved in linear time, through a rather nontrivial graph algorithm that we
cannot show here.

Some Further NP-Complete Problems

3SAT is an excellent starting point for further NP-completeness proofs. The
limitation to three literals per clause makes it nice to handle. Next we reduce
3SAT to Independent Set, thus proving in one go the NP-completeness of
Vertex Cover, Independent Set, and Clique.

Let us be given an instance of 3SAT, more precisely, a 3CNF with n
variables and m clauses, and with exactly 3 literals in every clause. The
reduction constructs a graph as follows.
(1) For each variable we create a pair of nodes (for the negated and un-
negated variable), joined by an edge.
(2) For each clause we create a triangle, with the 3 literals as nodes.
These pairs and triangles have together 2n + 3m nodes.
(3) An edge is also inserted between any node in a pair (1) and any node in
a triangle (2) which are labeled with identical literals.

One can show that the problem instances are equivalent: The 3CNF
formula is satisfiable if and only if this graph has an independent set of
k = m + n nodes. This needs a little thinking, but the proof steps are
straightforward. (For a better understanding it can be advisable to take a
little example of a 3CNF, draw the resulting graph, and verify the claimed
equivalence for the example and then in general.)

Reductions from a problem X to a probelm Y like this are called “gadget
constructions” in the literature, because the building blocks of an instance
of X are encoded by “gadgets”, which are the building blocks of instances
of Y . In our case, variables and clauses of a 3CNF are encoded by node
pairs and triangles, which are our gadgets. You are not expected to find
such gadget constructions yourself, but only to understand given ones.

The NP-completeness of many problems has been established by chains
of such reductions, among them the famous Traveling Salesman problem,
Coloring the nodes of a graph with 3 colors, several partitioning, packing
and covering problems, numerical problems like Subset Sum and (hence)
Knapsack, various scheduling problems, and many others. NP-complete
problems appear in all branches of combinatorics and optimization. We give
another natural example that is also useful for further reductions:

3

Problem: Set Packing

Given: a family of subsets of a finite set.

Goal: Select as many as possible of the given subsets that are pairwise
disjoint.

This resembles Interval Scheduling, but now the given subsets can be
any sets, rather than being intervals in an ordered set.

We show that Set Packing is NP-complete, by a polynomial-time reduc-
tion from Independent Set: Given a graph G = (V,E) and a number k,
we construct the following family of subsets S(v) ⊂ E, one for every node
v ∈ V : We define S(v) to be the set of all edges incident with v, the “star
with center v”, so to speak. Note that two stars are disjoint if and only if
their centers are not adjacent. Thus, G contains an independent set of k
nodes if and only if we can select k pairwise disjoint sets from this family.

Exponential Time Hypothesis (ETH)

The ETH claims, roughly speaking, that no algorithm can solve 3-SAT in
a time better than O(an), where a > 1 is some constant. (At least, this
is a variant of ETH that is easy to formulate. There are other variants of
different strengths.)

Like the P 6= NP hypothesis, it is not known whether ETH is true,
however it is widely accepted as a hypothesis. ETH would obviously imply
P 6= NP, but the converse is not clear.

ETH has the advantage that it claims some explicit lower time bound.
Conditional on ETH one can prove lower bounds also for other problems
via reductions. However one must be more careful with the time bounds of
these reductions.

Some Frequent Misconceptions

To proveNP-completeness of a problem Y , one must give a polynomial-time
reduction from a known NP-complete problem X to Y , not a reduction
from Y to X. Remember that Y is harder than X (more precisely: at least
as hard) and not easier.

4

An explanation why the direction of reductions is often confused might
be a misconception around the word “reduction”. In every-day use, to “re-
duce” something usually means to make it smaller, and this may be mis-
understood as “making the complexity smaller”, but here it is the other
way round! The word “transformation” would perhaps avoid this misunder-
standing, but “reduction” is the established term.

Furthermore notice that polynomial-time reducibility is not a symmetric
relation. If X is reducible to Y , this does in general not imply that Y is
also reducible to X. A reduction goes in only one direction, but inside a
reduction one must show equivalence of the instances, which involves two
directions: (1) If x is Yes then f(x) is Yes, and (2) if f(x) is Yes then x is
Yes. Moreover, this must hold true for every instance x of X, whereas not
every instance y of Y is required to be some f(x). In other words, function
f is not necessarily surjective. All these aspects are easy to confuse, but
this is only a matter of carefully learning the definitions and reflecting why
they are as they are.

Sometimes it is claimed in reports that NP means “not polynomial”,
which is complete nonsense. Finally, one should carefully distinshuish be-
tween “NP-problems” (that is, problems inNP, which also includes P), and
“NP-complete problems”. Here, sloppy naming can easily produce wrong
statements.

Similarly, sometimes it is claimed that P 6= NP would imply that NP-
complete problems can only be solved in exponential time. However, such
exponential lower bounds are not known.

NP-Completeness; Wrap-Up

What should you (at least) have learned about NP-completeness in a basic
algorithms course? You should:

• have understood the concepts on a technical level (not only vaguely
that NP-complete problems are “somehow difficult”),

• have understood their relevance,

• be able to carry out simple reductions (doing complicated reductions
is clearly something for specialized scientists in the field),

• know some representative NP-complete problems,

• know where to find more material.

5

If, in practice, a computational problem is encountered that apparently
does not admit a fast algorithm, it is a good idea to look up existing lists
of NP-complete problems. Maybe the decision version Y of the problem at
hand is close enough to some problem X in a list, and a polynomial-time
reduction from X to Y can be established. Then it is clear that Y must be
treated with heuristics, with suboptimal but fast approximation algorithms,
or with exact but slow algorithms.

A classic reference with hundreds of NP-complete problems is:
Garey, Johnson. Computers and Intractability: A Guide to the Theory of
NP-completeness. Freeman, San Francisco 1979.

Other repositories are on the Web.

6

Appendix

NP Quiz Continued: True or False? (And Why?)

The remarks in the Appendix of Lecture Notes 1 apply also here.

• “Earlier we have seen dynamic programming algorithms for Subset
Sum and Knapsack, but now NP-completeness is claimed. This is a
contradiction. Something must be wrong with this theory.”

• “The Clique problem is polynomial-time reducible to the Knapsack
problem.”

• “The Knapsack problem is polynomial-time reducible to the Clique
problem.”

• “The Independent Set problem is NP-complete for arbitrary graphs.
Interval graphs are special graphs. It follows that the Independent Set
problem for interval graphs is NP-complete.”

• “If, for some problem, we know some powerful heuristic that solves
typical instances efficiently, we can conclude that this problem is not
NP-complete, because those problems are difficult to solve.”

7

