
Algorithms. Lecture Notes 10

Graph Traversals

From now on, G = (V,E) denotes a graph with n = |V | nodes and m = |E|
edges.

Graph traversals are techniques to visit all nodes in a graph G = (V,E)

in a fast and systematic way. They provide a basis for several efficient graph

algorithms. We consider directed graphs G = (V,E) and denote a directed

edge from u to v by (u, v). Note that undirected graphs may be considered

as special directed graph where both directed edges (u, v) and (v, u) exist,

for every pair of adjacent nodes u and v.

Perhaps the simplest traversal strategy is Breadth-First-Search (BFS).

(Don’t forget the “d” in “breadth” ...) It starts in one node s which is put in

a queue and marked. In every step, BFS takes the next node u from queue

and visits all unmarked nodes v such that (u, v) ∈ E. Every such v is put

in the queue and marked. BFS stops as soon as the queue is empty.

We study some properties of BFS. First of all, BFS partitions the set

of nodes into layers Li, i ≥ 0, inductively defined as follows. L0 contains

only the start node s, and Li+1 contains all nodes v such that: an edge

(u, v) ∈ E for some u ∈ Li exists, and v is not already in an earlier layer.

It is easy to see that BFS, implemented with a queue, processes the nodes

exactly layer by layer. More importantly, the layers provide some useful

structure: Edges (u, v), with u ∈ Li, v ∈ Lj go at most to the next layer,

that is, j ≤ i + 1. (But j can be arbitrarily smaller than i.) It follows that

Li contains exactly the nodes with (directed) distance i from s, in other

words, the nodes reachable from s on a directed path with i (but not fewer

than i) edges. Hence BFS as such yields an algorithm for the Shortest Paths

problem, provided that all edges have unit length.

Take some time to think about the proof of the last assertion. One must

verify two things for every node t ∈ Li: (a) There exists some directed path

of length i from s to t. (b) There is no shorter directed path from s to t.

1

BFS also gives rise to a directed tree which contains all marked nodes

and a certain subset of the edges from E: Whenever a node v is found for

the first time, via the edge (u, v), we insert this edge in the tree. In fact,

this yields a tree rooted at s, since every node except s has exactly one

predecessor. We refer to it as the BFS tree. Note that all edges in the

BFS tree go from a layer to the next layer (but in general not all edges to

the next layer are in the BFS tree).

To analyze the time for BFS, note that every edge is considered only

once. The crucial step is to determine the nodes v with (u, v) ∈ E, for

a given u. The time for this operation depends on the way the graph is

represented. When adjacency lists are used, we simply need to traverse the

list for u, thus we spend only constant time on every edge. We conclude

that BFS needs O(m) time. (This simple argument in the time analysis is

very common, for a number of graph algorithms.) If an adjacency matrix is

used, we need O(n2) time, which is in general worse. Namely, for the node u

considered in each step we have to check all matrix entries in u’s row, even

in the case that almost all of them are 0.

The other standard graph traversal strategy is Depth-First-Search

(DFS). It starts in a node s and follows a directed path of yet unexplored

nodes, as long as possible. When it reaches a dead end (where all successor

nodes of the current node are already explored), it goes one step back on

the path, looks for another unexplored successor node, and so on.

The most compact formulation is a recursive procedure DFS(u) with

start node u as input parameter (the main program is to call DFS(s)): As

long as unmarked nodes v with (u, v) ∈ E exist, choose one such v, mark v,

and call DFS(v). – Since each recursive call is done only after termination of

the previous call, this gives the desired depth-first behaviour. DFS can also

be written as an iterative program, but then the stack must be implemented

explicitly.

DFS exhibits some similarities to BFS. The time for DFS is O(m) when

adjacency lists are used to collect all successors of a node. A DFS tree can

be defined as follows: Edge (u, v) belongs to the DFS tree if DFS(u) calls

DFS(v). Such edges (u, v) are said to be tree edges. Indeed, they form a

tree, since v becomes the input parameter of a recursive call only once, and

then v gets marked.

But there are also major differences to BFS. They concern the positions

of edges from E which are not in the DFS tree:

2

In undirected graphs, such edges can only go from a node to an ancestor

node in the DFS tree. This follows easily from the rules of DFS. We call

them back edges. There exist no cross edges, that is, edges joining nodes

from different paths of the DFS tree. (Why not? To understand the reason,

assume for contradiction that a cross edge exists, and see how DFS would

have produced it ...)

In directed graphs this issue is somewhat more complicated. Directed

edges which are not in the DFS tree can be divided into three types: for-

ward edges going from a node to some descendant node, back edges going

from a node to some ancestor node, and cross edges going from a node

to another node on an “earlier” directed path of the DFS tree. – These

structural properties are useful in several graph algorithms based on DFS.

Another remark: We had observed that BFS solves the Shortest Path

problem in the case of unit edge lengths. By way of contrast, DFS has noth-

ing to do with shortest paths! (Actually, this is a frequent misconception,

so make sure to avoid that mistake.)

Problem: Undirected Graph Connectivity

An undirected graph is connected if there exists a path between any two

nodes. The connected components are the maximal connected sub-

graphs.

Given: an undirected graph G = (V,E).

Goal: Decide whether G is connected. If not, compute the connected com-

ponents.

Problem: Strong Connectivity in Directed Graphs

A directed graph is strongly connected if there exists a directed path from

every node to every node. The strongly connected components are the

maximal strongly connected subgraphs.

Given: a directed graph G = (V,E).

Goal: Decide whether G is strongly connected. If not, compute the strongly

connected components.

3

Motivations:

If the graph models states of a system and possible transitions between

them, strong connectivity means it is always possible to recover every state,

i.e., the system has no irreversible moves. The street map of a city with

one-way streets should be strongly connected as well, or the traffic planners

made a mistake.

Some Applications of BFS and DFS: Connectivity

Testing connectivity of a graph can easily be misjudged as a trivial problem,

but without some systematic strategy we would aimlessly walk around in

the labyrinth of the graph and use much more time than necessary. Graph

traversal solves several connectivity problems efficiently, as we will see now.

BFS starting in node s in a graph G reaches exactly those nodes being

reachable from s on directed paths. The same is true for DFS. In particular,

if G is undirected, then the traversal explores exactly the connected compo-

nent of G which contains s. This gives an O(m) algorithm to test whether

an undirected graph G is connected: Run BFS or DFS, with an arbitrary

start node. G is connected if and only if all nodes are reached. We can also

determine the connected components of G in O(m + n) time: If the search

has aborted without finding all nodes, restart the search in a yet unmarked

node, and so on.

Connectivity is more intricate in directed graphs. Still, strong connectiv-

ity can be checked in O(m) time. But first we give a naive algorithm: Run

BFS (or DFS) twice for evry start node s: once on the given directed graph

and once on the reversed graph where all directe edges (u, v) are replaced

with their opposite edges (v, u). Thus we find all nodes t being reachable

from s, and we find all nodes t from which s is reachable. The graph is

strongly connected if and only if the result is positive for all pairs s, t. This

algorithm needs O(nm) time, for running BFS n times.

But a little thinking yields a much better algorithm: Run BFS twice (as

above), but with only one arbitrary but fixed start node s. The graph is

strongly connected if and only if both BFS runs reach all nodes. This is

correct because, in a strongly connected graph, one can get from every node

to every node also via the fixed node s. (Here we are only interested in the

existence of some path, not in its length, hence detours are not an issue.)

This algorithm needs only O(m) time. Note that a little mental work (in

algorithm design and correctness proof) has saved a factor n

4

If the graph is not strongly connected, then the last algorithm determines

the strongly connected component which contains s: It is the set of nodes

reached in both the given graph and the reversed graph. One can obviously

extend this algorithm, in order to partition the graph into its strongly con-

nected components. Hovewer, we may need O(nm) time again: In the worst

case, the graph may have many small strongly connected components, but

we may need O(m) time to determine each one in this way. Actually, it is

possible to compute even all strongly connected components in O(m) time

by some sophisticated use of DFS, but we have to skip this theme.

Problem: Graph Coloring

Given a set of k colors, a k-coloring of a graph assigns a color to each vertex,

so that adjacent vertices get different colors. A graph is k-colorable if it

admits a k-coloring. The 2-colorable graphs are exactly the bipartite graphs.

Given: an undirected graph G = (V,E) and an integer k.

Goal: Construct some k-coloring of G, or report that G is not k-colorable.

Motivations:

Imagine that a person who is not exactly an expert in botany gets a

set of plants, and he is told that they belong to two different species. He

does not always see whether two plants belong to the same species or not,

however, some pairs of plants are obviously different. Is it possible for him

to divide the set correctly and efficiently? This can be translated into the

2-coloring problem: Every species (class, category, etc.) is represented by a

“color”. The plants (or whatever objects) are nodes of a graph G = (V,E),

where any two nodes that are known to belong to different classes are joined

by an edge. The 2-colorable graphs are also called bipartite graphs.

Various problems dealing with packing, frequency assignment, job as-

signment, scheduling, partitioning, etc., can be considered as Graph Color-

ing, where the graph models pairwise conflicts. Note that Interval Partition-

ing problem is a special case of Graph Coloring, with the goal to minimize

the number of colors: Intervals are nodes, two nodes are adjacent if the

corresponding intervals overlap, and the “colors” are copies of the resource.

5

One Graph and Two Colors

We conclude with another simple application of BFS: The 2-coloring problem

is solvable in O(m) time. The key observation is: If a node gets one color,

then all adjacent nodes must get the other color, and so on. This is, a bit

implicitly, already the correctness proof of the following algorithm. BFS

merely serves as a framework to organize the enforced coloring efficiently.

Now the algorithm in detail: We compute the BFS tree and the layers.

Then, all nodes in the layers Li, i even, get one color, and all nodes in the

layers Li, i odd, get the other color. Since each node in Li+1 is joined to

some node in Li via some edge of the BFS tree, essentially only one valid 2-

coloring can exist in each connected component. The only degree of freedom

is that we can swap the two colors. (Alternatively one may also use DFS,

but then the details are, of course, different.)

The idea cannot be extended to k > 2 colors, because the color of a

node does no longer determine the color of all neigbored nodes. We have

the choice between different colors, and it is not clear how we could safely

avoid later coloring conflicts.

Actually, k-coloring is NP-complete for every k ≥ 3. This can be shown

by a reduction from 3SAT being somewhat similar to the reduction from

3SAT to Independent Set.

Problem: Minimum Spanning Tree

A spanning tree (MST) in an undirected graph G = (V,E) is a tree that

contains all nodes of V (it “spans” the graph) and a subset of edges taken

from E.

Given: a connected undirected graph G = (V,E) where every edge has

some positive cost.

Goal: Construct a spanning tree T in G with minimum total cost (sum of

costs of all edges in T).

Motivations:

This is a basic network design problem. It appears when certain sites

have to be connected in the cheapest way by streets, cables, virtual links,

or whatever. Edge costs may represent lengths, costs of material, or other

6

costs of the links. Note that a minimum-cost connected spanning subgraph

of G is always a tree, since if there were a cycle, we could remove some edge

without destroying connectivity.

Appendix

BFS/DFS Example

Some minimalistic example illustrates the differences of the two main traver-

sal techniques. Consider an undirected graph with node set V = {a, b, c, d}
and edge set E = {ab, ac, bc, bd}. (Here we use a common “lazy” notation

for undirected edges; for instance, ab means the edge between a and b.)

Recall that an undirected edge equals a pair of opposite directed edges.

BFS with start node a yields L0 = {a}, simply by definition, L0 = {b, c},
as these are all neighbors of a, and L2 = {d}, as this node has a neighbor

in L1, namely b. The layers are uniquely determined. In this example, the

BFS tree is also uniquely determined (containing all edges except bc). In

larger examples, however, the BFS tree may depend on the ordering of nodes

within the layers, because a node can in general have several neighbors in

the previous layer.

What happens in DFS with start node a? This heavily depends on the

order in which we consider the adjacent nodes. If we continue with c, then

we will follow the path a − c − b − d. Then this path is also the DFS tree,

and the edge ab is a back edge. If we, alternatively, visit b immediately after

a, we get a DFS tree with two overlapping paths: a − b − c and a − b − d.

The edge ac becomes a back edge on the first path. Note that there are (of

course) no cross edges.

7

