
Algorithms. Lecture Notes 12

Shortest and Longest Paths in DAGs

Shortest paths in directed graphs with unit edge lengths can be computed
by BFS, as we have seen. An extension of this shortest-path algorithm to
directed graphs with arbitrary edge lengths is Dijkstra’s algorithm that we
do not present here. (It may be known from data structure courses. Also
remember that this course is primarily about algorithm design and analysis
techniques, not about specific algorithms.) Anyway:

The Shortest Paths problem in DAGs is much easier to solve than in
general graphs. We can take advantage of a topological order, constructed
in O(n + m) time. Since paths must go strictly from left to right, we may
suppose that the source s is the first node in the topological order. All nodes
to the left of s can be ignored. Let l(u, v) denote the given length of the
directed edge (u, v), provided that it exists, and let d(u, v) denote the length
of a shortest path from u to v. Assume that we have already computed the
values d(s, x) for the first k − 1 nodes x in the topological order. Let z
denote the k-th node. Then we have d(s, z) = min d(s, x) + l(x, z), where
the minimum is taken for all x to the left of z. Correctness is evident, since
the predecessor of z on the path must be one of the mentioned nodes x.
This dynamic programming algorithm needs only O(m) time, because we
look at every edge only once.

Remark for those who know Dijkstra’s algorithm well (others may skip
it): The first k − 1 nodes in the topological order are, i general, not the
k− 1 nodes closest to s, because topological order and edge lengths are not
related. Therefore, the above algorithm is not Dijkstra’s algorithm applied
to DAGs. It treats the nodes in a different order.

Next we also want to find longest paths from s to all nodes in a DAG.
Amazingly, we can apply the same algorithm, replacing min with max. Why
is this correct? Think about this question. (In general directed graphs we
cannot simply take Dijkstra’s algorithm and replace min with max. This

1



would not yield the longest path. Actually the problem is NP-complete in
general graphs. What is different in DAGs – why does it work here?)

We remark that the dynamic programming algorithms for many other
problems (e.g. Sequence Comparison) can be interpreted as shortest- or
longest-paths calculations in certain DAGs derived from those problems.
More formally, we can reduce them to Shortest (or Longest) Paths in DAGs.
You may revisit some of these problems and figure out how their DAGs look.
Nevertheless it is still advantageous to use special-purpose algorithms for
those problems, because their DAGs have some highly regular structures,
such that memoizing optimal values in arrays is in practice faster than (un-
necessarily) dealing with data structures for arbitrary DAGs.

Union-and-Find

This is an addendum to Kruskal’s algorithm for MST. In an endeavor to
achieve a good time bound we face two problems: finding the cheapest edge,
and checking whether it creates cycles together with previously chosen edges.
(In that case, the algorithm skips the edge and goes to the next cheapest
edge, and so on.) The first problem is easily solved: In a preprocessing
phase we can sort the edges by ascending costs, in O(m log n) time, and
inside Kruskal’s algorithm we merely traverse this sorted list.

Checking cycles is more tricky. Remember that the already selected
edges build a forest. Every node belongs to exactly one tree in this forest.
The key observation is that a newly inserted edge does not create cycles if
and only if it connects two nodes from different trees in this forest.

Thus, we would like to have a data structure that maintains partition-
ings of a set (here: of the node set V ) into subsets (here: the forests), each
denoted by a label, and supports the following operations: Find(i) shall re-
turn the label of the subset of the partitioning that contains the element i.
Union(A,B) shall merge the subsets with labels A and B, that is, replace
these sets with their union A ∪B and assign a label to it. (In the following
we will not clearly distinguish between a set and its label, just for conve-
nience.) Such a data structure is not only needed in Kruskal’s algorithm. It
also appears in, e.g., the minimization of the set of internal states of finite
automata with specified input-output behaviour. We cannot treat the latter
subject here. This is just mentioned to point out that the Union-and-Find
data structure is of broader interest and is not a “one-trick pony”.

The problem of making an efficient data structure for Union-and-Find

2



is nontrivial. A natural approach is to store all elements, together with
the labels of sets they belong to, in an array. Then, Find(i) is obviously
performed in O(1) time, by looking at the table entry of i. To make the
Union(A,B) operations fast, too, we could store every set A separately in
a list, along with the size |A|. (Without that, we would have to collect the
elements of A, which are spread out in the array ...) Now, each element
appears twice: in the global array and in the “compact” list of the set it
belongs to. These two copies of each element may be joined by pointers.

Now we describe how to perform Union(A,B): Suppose that |A| ≤ |B|;
the other case is symmetric. It is natural to change the labels of all elements
in the smaller set from A to B, as this minimizes the work needed to update
the partitioning. That is, we traverse the list of A, use the pointers to find
these elements also in the array, change their labels to B, and finally we
merge the lists of A and B and add their sizes. Note that the union is now
named B.

The analysis of this data structure is quite interesting. Any single
Union(A,B) operation can require O(n) steps, namely if the smaller set
A is already a considerable fraction of the entire set. However, we are not
so much interested in the worst-case complexity of every single Union op-
eration. In Kruskal’s algorithm we need n − 1 = O(n) Union operations
and O(m) Find operations. The latter ones cost O(m) time altogether. The
remaining question is how much time we need in total for all Union oper-
ations. Intuitively, the aforementioned worst case cannot occur very often,
therefore we should not rush and conclude a poor O(n2) bound.

Instead of staring at the worst case for every single Union operation we
change the viewpoint and ask how often every element is relabed and moved!
That is, we sum up the elementary operations in a different way. An element
is relabeled in a Union operation only if it belongs to the smaller set. Hence,
after this Union operation it belongs to a new set of at least double size.
It follows immediately that every element is relabeled at most log2 n times,
because this is the largest possible number of doublings. Thus we get a time
bound O(n log n) for all n − 1 Union operations together. This is within
the O(m log n) bound that we already needed to sort the edges in Kruskal’s
algorithm.

Thus, the above Union-and-Find data structure is “good enough” for
Kruskal’s algorithm. However, a faster Union-and-Find structure would
further improve the physical running time and might also be useful within
other algorithms. We briefly sketch a famous Union-and-Find data struc-

3



ture that is faster. (The following paragraph is extra material and may be
skipped.)

We represent the sets of the partitioning as trees whose nodes are the
elements. Every tree node except the root has a pointer to its parent, and
the root stores the label of the set. Beware: These trees should not be
confused with the trees in the forest within Kruskal’s algorithm. Instead,
they are formed and processed as follows. When Find(i) is called, we start
in node i and walk to the root (where we find the label of the set), following
the pointers. When Union(A,B) is called, then the root of the smaller tree
is “adopted” as a new child by the root of the bigger tree. This works
in O(1) time, since only one new pointer must be created. By the same
doubling argument as before, the depth of any node can increase at most
log2(k + 1) times during the first k Union operations. As a consequence,
every Find operation needs at most O(log k) time. Now we can perform
every Union operation in O(1) time and every Find operation in O(log k)
time, where k is the total number of these data structure operations. In the
really good implementation, however, trees are also modified upon Find(i)
operations: Root r adopts all nodes on the path from i to r as new children!
This “path compression” is not much more expensive than just walking the
path, but it makes the paths for future Find operations much shorter. It
can be shown that, with path compression, k Union and Find operations
need together only O(k) time (rather than O(k log k)), subject to an extra
factor that grows so extremely slowly that we can ignore it in practice. The
time analysis is intricate and must be omitted here, but the structure itself
is rather easy to implement.

Problem: Interval Partitioning

Given: a set of n intervals [si, fi], i = 1, . . . , n, on the real axis.

Goal: Partition the set of intervals into the smallest possible number d of
subsets X1, X2, X3, . . . , Xd, each constisting of pairwise disjoint intervals.

Motivations:
They are similar to Interval Scheduling. The difference is that several

“copies” of the resource are available, and all requests shall be served, using
the smallest number of copies.

4



A Greedy Algorithm for Interval Partitioning

Let the subsets X1, X2, X3, . . . initially be empty. We sort the intervals such
that s1 < . . . < sn, and we consider them in this order. (As opposed to the
Interval Scheduling algorithm, they are sorted by their start points – this is
intended!) We always put the current interval x into the subset Xi with the
smallest possible index i. That is, we choose the smallest i such that x does
not intersect any other interval in Xi.

Here we omit the details of an efficient implementation and come to the
interesting point: Why is this greedy rule correct? In fact, optimality may
be proved again by an exchange argument, but here we illustrate another
nice proof technique: We give a simple bound for the value d to be optimized,
and then we show that our solution attains this bound, hence it is optimal.

Specifically, let d be the maximum number of intervals I for which some
point p exists which is contained in all these intervals (∀I : p ∈ I). On
the one hand, since these d intervals must be put in d distinct subsets, any
solution needs at least d subsets, even an optimal solution. On the other
hand, our greedy algorithm uses only d subsets: Whenever a new interval
x starts, at most d − 1 earlier intervals can intersect x, because any such
interval must contain the start point of x. Hence we can always put x in
some of the first d subsets.

This proof is an example of duality, a principle that plays a central role
in optimization. Given a ‘primal” minimization problem, we set up a “dual”
maximization problem, which is chosen in such a way that the maximum
dual value is a lower bound on the primal values. Then, if some primal
solution happens to attain this bound, this solution is optimal.

5



Figure 1: Illustration of the correctness proof for the Interval Partitioning
greedy algorithm. Let d = 5. The current interval I (the thick line) has
conflicts with at most 4 intervals that started earlier, because all these con-
flicting intervals contain I’s start point, and at most 5 intervals can share a
point. Hence we can put I in some of the 5 sets.

6


