
Algorithms. Lecture Notes 13

Space-Efficient Sequence Comparison

This section deals with an algorithm where dynamic programming and
divide-and-conquer work nicely together. We also address the space com-
plexity of a problem (unlike the rest of the course).

Suppose m ≤ n. We have seen an algorithm that aligns two sequences
A = a1 . . . an and B = b1 . . . bm in O(nm) time. Unfortunately, it also needs
O(nm) space, which can be prohibitive for applications in molecular biology
where n,m are huge numbers. What can we do about that?

We may implement the dynamic programming algorithm in such a way
that it requires only O(m) space: For computing the values OPT (i, j) we
need only the previous row of the array of OPT values, but we can forget
all earlier values.

But this gives us only the score OPT (n,m) of a best alignment. If we
are supposed to deliver an optimal alignment as well, we need (potentially)
all OPT (i, j) values for the backtracing procedure, since we do not know in
advance the optimal path through the array. We could maintain the best
alignments of prefixes along with the OPT (i, j) values, but then we are back
to O(nm) space complexity.

The striking idea to overcome the space problem is to determine one
entry (or “node”) in the middle of the optimal path. We get it from the
scores, which can be computed in small space by dynamic programming
(as we have seen above). Once we know one node of the optimal path, we
can split our problem instance in two independent instances and solve them
recursively, one after another. Thus, everything happens in small memory
space, while the divide-and-conquer structure ensures that we do not lose
too much time. Below we describe the resulting algorithm in more detail.

Let k ≈ m/2. We compute the scores (edit distanes) OPT (j, k) for all
j by dynamic programming, in O(nm) time and O(m) space. The same is
done for the reversed sequences an . . . a1 and bm . . . b1. The half sequence
b1 . . . bk must be aligned to a1 . . . aj , for some yet unknown j, and the other

1



half of B to the rest of A. After that splitting, the two optimal alignments
are completely independent. In order to find the optimal cut-off point j,
we can simply add the scores of these two alignments and pick an index j
where the sum of scores is minimized. Clearly, the minimum sum is found
in O(n) time and space. Finally we divide B at position k, and we divide A
at the optimal position j just determined, and we make two recursive calls
to solve the sub-instances.

We never need more than O(n) space simultaneuously. The time com-
plexity is given by the recurrence T (n,m) = 2T (n,m/2) + O(nm), since
divide-and-conquer is done on a sequence B of length m, and O(nm) time
is still needed to compute the scores. Note that this recurrence has two
variables. Without the argument n and without factor n in the last termn,
we would have the standard recurrence T (m) = 2T (m/2) +O(m) with solu-
tion T (m) = O(m logm). Our n can be treated as a “constant” factor that
appears in every recursion level, thus we can immediately conclude that
T (n,m) = O(mn logm). Actually, a slightly more careful analysis yields an
O(nm) time and O(n) space bound.

Problem: Clustering with Maximum Spacing

A clustering of a set of (data) points is simply a partitioning into disjoint
subsets of points, called clusters. Some distance function is defined between
the points. The distance of two point sets A and B is the minimum distance
of two points a ∈ A and b ∈ B. The spacing of a clustering is the minimum
distance of two clusters (or equivalently, the minimum distance of any two
points from different clusters).

Given: a set of n points in some geometric space, and an integer k < n.
The pairwise distances of points are known, or they can be easily computed
from their coordinates.

Goal: Construct a clustering with k clusters and maximum spacing.

2



Motivations:
Clustering in general has many applications in data reduction, pattern

recognition, classification, data mining, and related fields. Coordinates of
points are often numerical features of objects. Every cluster shall consist of
“similar” objects, whereas objects in different clusters shall be “dissimilar”.
However, we have to make these intuitive notions precise. There exist myr-
iads of meaningful quality measures for clusterings, and each one gives rise
to an algorithmic problem: to find a clustering that optimizes this quality
measure.

Many clustering problems can be formulated as graph problems, where
the data objects are nodes. For instance, Graph Coloring can be seen as
a clustering problem: The desired number k of clusters is given, and every
cluster must fulfill some “internal” criterion, namely, not to contain any pair
of dissimilar nodes. Spacing is an “external” quality measure. It demands
that any two clusters be far away from each other, while nothing is explicitly
said about the inner structure of clusters.

Clustering with Maximum Spacing via MST

Kruskal’s MST algorithm has a nice application and interpretation in the
field of clustering problems. Suppose that the nodes of our graph are data
points, and the edge costs are the distances. (The graph is complete, that
is, all possible edges exist.) A clustering with maximum spacing (i.e., maxi-
mized minimum distance between any two clusters) can be found as follows:
Do n − k steps of Kruskal’s algorithm and take the node sets of the so
obtained k trees T1, . . . , Tk as clusters.

We prove that the obtained spacing d is in fact optimal: Consider any
partitioning into k clusters U1, . . . , Uk. There must exist two nodes p, q in
some Tr that belong to different clusters there, say p ∈ Us, q ∈ Ut. Due
to the rule of Kruskal’s algorithm, all edges on the path in Tr from p to q
have cost at most d. But one of these edges joins two different “U clusters”,
hence the spacing of the other clustering can never exceed d.

3


