
Algorithms. Assignment 5

Problem 9

The following type of problem can appear in biological testing, in communi-
cation protocols, and some other fields. But do not worry about applications.
For the sake of this exercise you can just accept the problem in this abstract
form:

We are given a set S of n physical objects. Exactly one object in S is
“special”, but we do not know which one. We have the possibility to test
arbitrary subsets R ⊆ S. The test outcome is binary: A positive test
outcome tells us that the special object is in R. A negative test outcome
tells us that the special object is not in R (and hence in S \R).

(a) Give a test strategy that identifies the special object by using a minimal
worst-case number of tests. How many tests do you need? Note that the
question is about the exact number of tests, not about O-notation.

(b) Is your worst-case test number in (a) optimal? If so, explain why.
If not, re-work (a).

Hopefully you have immediately recognized the similarity to a known simple
problem and applied divide-and-conquer. But now a new difficulty comes
up: For technical reasons it is not possible to test large sets R. Specifically,
every test set R is allowed to contain at most k objects, where k is some
known fixed number (which might be much smaller than n). After a moment
of thinking, the following test strategy naturally comes to mind:

Test disjoint subsets of S, each of size k, until some set R is tested positively.
In this event, search for the special object in R, as in (a). (Since we have
already |R| ≤ k, the size restriction is irrelevant from now on.) If all tests
are negative so far, and less than 2k objects remain, then search among the
remaining objects, as in (a), as well.

So this is a nice combination of a greedy rule and divide-and-conquer. But
we have good reasons to be skeptical about greedy rules. Maybe it is better
to test less than k objects in every step, because this makes the final search
phase in the positive set R faster?

However, the proposed strategy is in fact optimal. We use two little inter-
mediate steps to prove this. (See next page.)
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Let Tk(n) be defined as the worst-case number of tests needed, if |S| = n,
and tests are limited to at most k objects.

(c) We claim that

Tk(n) = 1 + min
j≤k

max{Tk(j), Tk(n− j)}.

Explain why this is true.

Just in case, the notation means: For any fixed n and k, and for any j, take the

maximum of the two terms in the curly brackets, finally take the minimum of these

maxima, for all j that are less than or equal to k.

(d) We claim that Tk is a monotone function, that is: For all i ≤ j we have
Tk(i) ≤ Tk(j). Explain why this is true (which should be very easy).

(e) Finally, prove optimality of the proposed test algorithm. It might be a
good idea to use the results of (c) and (d).

If you cannot manage the entire problem, it is OK to submit what you have,
and ask for advice about points where you struggle.
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