
Lecture
Computability

(DIT313, DAT415)

Nils Anders Danielsson

2022-11-28



Today

▶ Rice’s theorem.
▶ Turing machines.



Rice’s
theorem



A variant of Rice’s theorem
Assume that P ∈ CExp → Bool satisfies the
following properties:
▶ P is non-trivial:

There are expressions etrue, efalse ∈ CExp
satisfying P etrue = true and P efalse = false.

▶ P respects pointwise semantic equality:

∀ e1, e2 ∈ CExp.
if ∀ e ∈ CExp. ⟦e1 e⟧ = ⟦e2 e⟧ then

P e1 = P e2

Then P is 𝜒-undecidable.



Rice’s theorem

The halting problem reduces to P:

halts = 𝜆e. case P ⌜ 𝜆 . rec x = x ⌝ of
{False() →

P ⌜ 𝜆x. (𝜆 . etrue x) (eval ⌞ code e ⌟) ⌝
; True() →

not (P ⌜ 𝜆x. (𝜆 . efalse x) (eval ⌞ code e ⌟) ⌝)
}



Quiz

Which of the following problems are
𝜒-decidable?

1. Is e ∈ CExp an implementation of the
successor function for natural numbers?

2. Is e ∈ CExp syntactically equal to 𝜆n. Suc(n)?

Respond at https://pingo.coactum.de/921051.

https://pingo.coactum.de/921051


Is e ∈ CExp an implementation of the
successor function for natural numbers?

This problem is not 𝜒-decidable.
Use Rice’s theorem:
▶ P e = if ∀ n ∈ ℕ. ⟦e ⌜ n ⌝⟧ = ⌜ suc n ⌝

then true else false.
▶ P is non-trivial:

▶ P (𝜆n. Suc(n)) = true.
▶ P (Zero()) = false.

▶ P respects pointwise semantic equality:
(∀e ∈ CExp. ⟦e1 e⟧ = ⟦e2 e⟧) ⇒
(∀n ∈ ℕ. ⟦e1 ⌜ n ⌝⟧ = ⟦e2 ⌜ n ⌝⟧) ⇒
P e1 = P e2



Turing
machines



Intuitive idea

▶ A tape that extends arbitrarily far to the right.
▶ The tape is divided into squares.
▶ The squares can contain symbols,

chosen from a finite alphabet.
▶ A read/write head, positioned over one square.
▶ The head can move from one square to an

adjacent one.
▶ Rules that explain what the head does.



Rules

▶ A finite set of states.
▶ When the head reads a symbol

(blank squares correspond to a special symbol):
▶ Check if the current state contains a

matching rule, with:
▶ A symbol to write.
▶ A direction to move in.
▶ A state to switch to.

▶ If not, halt.



Motivation

▶ Turing motivated his design partly by reference
to what a human computer does.

▶ Please read his text.



Abstract
syntax



Abstract syntax

A Turing machine (one variant) is specified by
giving the following information:
▶ S: A finite set of states.
▶ s0 ∈ S: An initial state.
▶ Σ: The input alphabet,

a finite set of symbols with ␣ ∉ Σ.
▶ Γ: The tape alphabet,

a finite set of symbols with Σ ∪ {␣} ⊆ Γ.
▶ 𝛿 ∈ S × Γ ⇀ S × Γ × {L, R}:

The transition “function”.



Abstract syntax

S is a finite set s0 ∈ S
Σ is a finite set ␣ ∉ Σ

Γ is a finite set Σ ∪ {␣} ⊆ Γ
𝛿 ∈ S × Γ ⇀ S × Γ × {L, R}

(S, s0, Σ, Γ, 𝛿) ∈ TM



Operational
semantics



Positioned tapes

▶ Representation of the tape and
the head’s position:

Tape = List Γ × List Γ

▶ Here (ls, rs) stands for

reverse ls ++ rs

followed by an infinite sequence of blanks (␣).



Positioned tapes

([2, 1], [3, 4, ␣, ␣]) stands for:

..1. 2. 3. 4. ␣. ␣. ␣. ␣. ⋯.

Head



The symbol under the head

The head is located over the first symbol in rs
(or a blank, if rs is empty):

headT ∈ Tape → Γ
headT (ls, rs) = head rs

head ∈ List Γ → Γ
head [ ] = ␣
head (x ∷ xs) = x



Writing

Writing to the tape:

write ∈ Γ → Tape → Tape
write x (ls, rs) = (ls, x ∷ tail rs)

The “tail” of a sequence:

tail ∈ List Γ → List Γ
tail [ ] = [ ]
tail (r ∷ rs) = rs



Moving

Moving the head:

move ∈ {L, R} → Tape → Tape
move R (ls, rs) = (head rs ∷ ls, tail rs)
move L ([ ], rs) = ([ ] , rs)
move L (ls, rs) = (tail ls , head ls ∷ rs)



Actions

Actions describe what the head will do:

Action = Γ × {L, R}

Note:

𝛿 ∈ S × Γ ⇀ S × Action

First write, then move:

act ∈ Action → Tape → Tape
act (x, d) t = move d (write x t)



Quiz

Which of the following equalities are valid?
1. act (0, L) (act (1, L) ([ ], [ ])) = ([ ], [0, 1])
2. act (0, L) (act (1, L) ([ ], [ ])) = ([0, 1], [ ])
3. act (0, L) (act (1, L) ([ ], [ ])) = ([1, 0], [ ])
4. act (0, R) (act (1, R) ([ ], [ ])) = ([ ], [0, 1])
5. act (0, R) (act (1, R) ([ ], [ ])) = ([0, 1], [ ])
6. act (0, R) (act (1, R) ([ ], [ ])) = ([1, 0], [ ])

Respond at https://pingo.coactum.de/921051.

https://pingo.coactum.de/921051


Quiz

act (0, L) (act (1, L) ([ ], [ ])) =
act (0, L) (move L (write 1 ([ ], [ ]))) =
act (0, L) (move L ([ ], [1])) =
act (0, L) ([ ], [1]) =
move L (write 0 ([ ], [1])) =
move L ([ ], [0]) =
([ ], [0])



Quiz

act (0, R) (act (1, R) ([ ], [ ])) =
act (0, R) (move R (write 1 ([ ], [ ]))) =
act (0, R) (move R ([ ], [1])) =
act (0, R) ([1], [ ]) =
move R (write 0 ([1], [ ])) =
move R ([1], [0]) =
([0, 1], [ ])



Small-step operational semantics

A configuration consists of a state and a tape:

Configuration = State × Tape

The small-step operational semantics relates
configurations:

𝛿 (s, headT t) = (s′, a)
(s, t) ⟶ (s′, act a t)



Reflexive transitive closure

Zero or more small steps:

c ⟶⋆ c
c1 ⟶ c2 c2 ⟶⋆ c3

c1 ⟶⋆ c3

The machine halts if it ends up in a configuration c
for which there is no c′ such that c ⟶ c′.



The machine’s result

▶ The machine is started in state s0.
▶ The head is initially over the left-most square.
▶ The tape’s contents is initially a string of

characters from the input alphabet Σ.
▶ If the machine halts, then the result consists of

the contents of the tape, up to the last
non-blank symbol.

▶ (In 2016/2017 I required the machine to halt
with the head over the left-most square.)



The machine’s result

A relation between List Σ and List Γ:

(s0, [ ], xs) ⟶⋆ (s, t) ∄c. (s, t) ⟶ c
xs ⇓ remove (list t)



Constructing the result
The function list converts the representation of the
tape to a list, and remove removes all trailing
blanks:

list ∈ Tape → List Γ
list (ls, rs) = reverse ls ++ rs

remove ∈ List Γ → List Γ
remove [ ] = [ ]
remove (x ∷ xs) = cons′ x (remove xs)
cons′ ∈ Γ → List Γ → List Γ
cons′ ␣ [ ] = [ ]
cons′ x xs = x ∷ xs



Quiz
Which properties does ⇓ satisfy?

1. Is it deterministic (for every Turing machine)?

∀ tm ∈ TM.
∀ xs ∈ List Σtm. ∀ ys, zs ∈ List Γtm.

xs ⇓tm ys ∧ xs ⇓tm zs ⇒ ys = zs

2. Is it total (for every Turing machine)?

∀ tm ∈ TM. ∀ xs ∈ List Σtm.
∃ ys ∈ List Γtm. xs ⇓tm ys

Respond at https://pingo.coactum.de/921051.

https://pingo.coactum.de/921051


The machine’s partial function

The semantics as a partial function:

⟦ ⟧ ∈ ∀ tm ∈ TM. List Σtm ⇀ List Γtm
⟦tm⟧ xs = ys if xs ⇓tm ys



Two
examples



An example

▶ Input alphabet: {0, 1}.
▶ Tape alphabet: {0, 1, ␣}.
▶ States: {s0}.
▶ Initial state: s0.



Transition function

𝛿 (s0, 0) = (s0, 1, R)
𝛿 (s0, 1) = (s0, 0, R)

..s0.

(0, 1, R)

. (1, 0, R)



Quiz
What is the result of running this TM with
0101 as the input string?

1. No result
2. 0000
3. 1111
4. 0101
5. 1010
6. 0101␣
7. 1010␣

Respond at https://pingo.coactum.de/921051.

https://pingo.coactum.de/921051


..0. 1. 0. 1. ␣. ␣. ␣. ␣. ⋯.

s0

..1. 1. 0. 1. ␣. ␣. ␣. ␣. ⋯.

s0

..1. 0. 0. 1. ␣. ␣. ␣. ␣. ⋯.

s0

..1. 0. 1. 1. ␣. ␣. ␣. ␣. ⋯.

s0

..1. 0. 1. 0. ␣. ␣. ␣. ␣. ⋯.

s0



Another example

One way to make sure that the head ends up over
the left-most square:
▶ Input alphabet: {0, 1}.
▶ Tape alphabet: {0, 1, 0, 1, ␣}.
▶ States: {s0, s1, s2, s3}.
▶ Initial state: s0.



Transition function

..s0. s1.

s2

.

s3

.

(0, 0, R)

.
(1, 1, R)

.

(␣, ␣, L)

.

(0, 0, R)

. (1, 1, R).

(␣, ␣, L)

.

(0, 1, L)

.

(1, 0, L)

.

(0, 1, L)

.

(1, 0, L)



Accepting
states



Accepting states

Turing machines with accepting states:

S is a finite set s0 ∈ S A ⊆ S
Σ is a finite set ␣ ∉ Σ

Γ is a finite set Σ ∪ {␣} ⊆ Γ
𝛿 ∈ S × Γ ⇀ S × Γ × {L, R}

(S, s0, A, Σ, Γ, 𝛿) ∈ TM



Is the string accepted?

A relation on List Σ:

(s0, [ ], xs) ⟶⋆ (s, t) ∄c. (s, t) ⟶ c
s ∈ A

Accept xs



Is the string rejected?

A relation on List Σ:

(s0, [ ], xs) ⟶⋆ (s, t) ∄c. (s, t) ⟶ c
s ∉ A

Reject xs

Note that if the TM fails to halt, then the string is
neither accepted nor rejected.



An example

▶ Input alphabet: {1}.
▶ Tape alphabet: {1, ␣}.
▶ States: {s0, s1}.
▶ Initial state: s0.
▶ Accepting states: {s0}.



Transition function

..s0. s1.

(1, 1, R)

.

(1, 1, R)

▶ Quiz: Which strings are accepted by this
Turing machine? (Respond at
https://pingo.coactum.de/921051.)

https://pingo.coactum.de/921051


Transition function

..s0. s1.

(1, 1, R)

.

(1, 1, R)

▶ Quiz: Which strings are accepted by this
Turing machine? (Respond at
https://pingo.coactum.de/921051.)

https://pingo.coactum.de/921051


Variants



Variants

Equivalent (in some sense) variants:
▶ Possibility to stay put.
▶ A tape without a left end.
▶ Multiple tapes.
▶ Only two symbols, other than the blank one.



Representing
inductively
defined sets



Natural numbers

One method:

⌜ ⌝ ∈ ℕ → List {1}
⌜ zero ⌝ = [ ]
⌜ suc n ⌝ = 1 ∷ ⌜ n ⌝



Natural numbers

Another method:

⌜ ⌝ ∈ ℕ → List {0, 1}
⌜ zero ⌝ = 0 ∷ [ ]
⌜ suc n ⌝ = 1 ∷ ⌜ n ⌝

This method is used below.



Lists
Assume that members of A can be represented using
a function ⌜ ⌝ ∈ A → List Ξ that is splittable:
▶ It is injective.
▶ There is a function

split ∈ List Ξ → List Ξ × List Ξ

such that, for any x ∈ A, xs ∈ List Ξ,

split (⌜ x ⌝ ++ xs) = (⌜ x ⌝, xs).

Note that split can only be defined for one of the
presented methods for representing natural numbers.



Lists
Assume that members of A can be represented using
a function ⌜ ⌝ ∈ A → List Ξ that is splittable:
▶ It is injective.
▶ There is a function

split ∈ List Ξ → List Ξ × List Ξ

such that, for any x ∈ A, xs ∈ List Ξ,

split (⌜ x ⌝ ++ xs) = (⌜ x ⌝, xs).

Note that split can only be defined for one of the
presented methods for representing natural numbers.



Lists

Representation of List A:

⌜ ⌝ ∈ List A → List (Ξ ∪ {0, 1})
⌜ [ ] ⌝ = 0 ∷ [ ]
⌜ x ∷ xs ⌝ = 1 ∷ ⌜ x ⌝ ++ ⌜ xs ⌝

This function is splittable.



Quiz

Which list of natural numbers does
11110101110100 stand for?

1. None
2. [3, 0, 2]
3. [3, 0, 2, 0]
4. [3, 2, 0]
5. [4, 1, 3, 1]
6. [4, 1, 3, 1, 0]

Respond at https://pingo.coactum.de/921051.

https://pingo.coactum.de/921051


Pairs

Assume that members of A and B can be
represented using functions ⌜ ⌝A ∈ A → List Ξ and
⌜ ⌝B ∈ B → List Ξ that are splittable.

Representation of A × B:

⌜ ⌝ ∈ A × B → List Ξ
⌜ (x, y) ⌝ = ⌜ x ⌝A ++ ⌜ y ⌝B

This function is also splittable.



Turing-
computability



Turing-computable functions
Assume that we have methods for representing
members of the sets A and B as elements of List Σ,
where Σ is a finite set.

A partial function f ∈ A ⇀ B is Turing-computable
(with respect to these methods) if there is a Turing
machine tm such that:
▶ Σtm = Σ.
▶ ∀a ∈ A. ⟦tm⟧ ⌜ a ⌝ = ⌜ f a ⌝.



Languages

▶ A language over an alphabet Σ is
a subset of List Σ.



Turing-decidable
A language L over Σ is Turing-decidable if there is a
Turing machine tm such that:
▶ Σtm = Σ.
▶ ∀xs ∈ List Σ. if xs ∈ L then Accepttm xs.
▶ ∀xs ∈ List Σ. if xs ∉ L then Rejecttm xs.



Turing-recognisable
A language L over Σ is Turing-recognisable if there
is a Turing machine tm such that:
▶ Σtm = Σ.
▶ ∀xs ∈ List Σ. xs ∈ L iff Accepttm xs.



Summary

▶ Rice’s theorem.
▶ Turing machines:

▶ Abstract syntax.
▶ Operational semantics.
▶ Variants.
▶ Representing inductively defined sets.
▶ Turing-computability.


	Introduction
	Rice′s theorem
	Turing machines
	Abstract syntax
	Operational semantics
	Two examples
	Accepting states
	Variants
	Representing inductively defined sets
	Turing-computability
	Summary

