
TMA683 Tillämpad matematik

Övningsuppgifter (boken FEM)
28 oktober 2022

This document contains the exercises from the compendium fromM. Asadzadeh (23.08.2018).

Particularly relevant exercises are marked with (∗).
Propositions or hints for solutions are given at the end of the file (thanks to Sebastian

Persson).

Thank you for reporting typos or errors via email.

1. Chapter 4: Polynomial approximation in 1d

4.1 Prove that V
(q)
0 = {v ∈ P(q)(0, 1), v(0) = 0} is a subspace of P(q)(0, 1).

4.3 Consider the ODE

u̇(t) = u(t), 0 < t < 1, u(0) = 1.

Compute its Galerkin approximation in P(q)(0, 1) for q = 1, 2, 3, 4.

4.4 (∗) Compute the stiffness matrix and load vector in a finite element approximation of

the BVP

−u′′(x) = f(x), 0 < x < 1, u(0) = u(1) = 0

with f(x) = x and h = 1/4.

4.5 We want to find a solution approximation U(x) to

−u′′(x) = 1, 0 < x < 1, u(0) = u(1) = 0,

using the ansatz U(x) = A sin(πx) +B sin(2πx).

(a) Calculate the exact solution u(x).

(b) Write down the residual R(x) = −U ′′(x)− 1.

(c) Use the orthogonality condition∫ 1

0

R(x) sin(nπx) dx = 0, n = 1, 2

to determine the constants A and B.

(d) Plot the error e(x) = |u(x)− U(x)|.
4.6 Consider the BVP

−u′′(x) + u(x) = x, 0 < x < 1, u(0) = u(1) = 0.
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(a) Verify that the exact solution to the above problem reads

u(x) = x− sinh(x)

sinh(1)
.

(b) Let U(x) be a solution approximation defined by

U(x) = A sin(πx) +B sin(2πx) + C sin(3πx),

where A,B,C are unknown constants. Compute the residual

R(x) = −U ′′(x) + U(x)− x.

(c) Use the orthogonality conditions∫ 1

0

R(x) sin(nπx) dx = 0, n = 1, 2, 3

to determine the constants A,B,C.

4.7 Let U(x) = ζ0ϕ0(x) + ζ1ϕ1(x) be a solution approximation to

−u′′(x) = x− 1, 0 < x < π, u′(0) = u(π) = 0,

where ζ0 and ζ1 are unknown coefficients and ϕ0(x) = cos(x
2
), ϕ1(x) = cos(3x

2
).

(a) Find the analytical solution u(x).

(b) Define the residual R(x).

(c) Compute the constants ζ0 and ζ1 using the orthogonality conditions∫ π

0

R(x)ϕi(x) dx = 0, i = 0, 1.

I.e. by projecting R(x) onto the vector space spanned by ϕ0(x) and ϕ1(x).

4.8 Use the projection technique of the previous exercise to solve

−u′′(x) = 0, 0 < x < π, u(0) = 0, u(π) = 2,

with U(x) = A sin(x) + B sin(2x) + C sin(3x) + 2
π2x

2 and using the test functions

{sin(x), sin(2x), sin(3x)}.
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2. Chapter 5: Interpolation, Numerical integration in 1d

5.1 Consider two real numbers a < b. By defintion of Lagranges polynomials, one has

λa(x) =
b− x

b− a
and λb(x) =

x− a

b− a
.

Show that

λa(x) + λb(x) = 1 and aλa(x) + bλb(x) = x.

Give a geometric interpretation by plotting λa(x), λb(x), λa(x)+λb(x) and aλa(x), bλb(x), aλa(x)+

bλb(x).

5.2 (∗) Consider the following functions defined for x ∈ [0, 1]:

f(x) = x2 and g(x) = sin(πx).

Find their linear interpolants, denoted by Πf ∈ P(0, 1), resp. Πg ∈ P(0, 1). In the

same figure, plot f and Πf , as well as g and Πg.

5.3 Determine the linear interpolant of the function, defined for x ∈ [−π, π],

f(x) =
1

π2
(x− π)2 − cos2(x− π

2
),

where the interval [−π, π] is divided into 4 equal subintervals.

5.15 Prove that ∫ x1

x0

f ′(
x0 + x1

2
)(x− x0 + x1

2
) dx = 0.

5.16 (∗) Prove that∣∣∣∣∫ x1

x0

f(x) dx− f(
x0 + x1

2
)(x1 − x0)

∣∣∣∣ ≤ 1

2
max
[x0,x1]

|f ′′(x)|
∫ x1

x0

(x− x0 + x1

2
)2 dx

≤ 1

24
(x1 − x0)

3 max
[x0,x1]

|f ′′(x)|.

Hint: Use a Taylor expansion of f about x = x0+x1

2
.
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3. Chapter 7: Two-point boundary value problems

7.1 Consider the two-point BVP

−u′′(x) = f(x), 0 < x < 1, u(0) = u(1) = 0.

Let V = {v : ∥v∥+ ∥v′∥ < ∞, v(0) = v(1) = 0} where ∥·∥ denotes the L2-norm.

(a) Use V to derive a variational formulation for the above BVP.

(b) Discuss why V is valid as a vector space of test functions.

(c) Classify which of the following functions are admissible test functions:

sin(πx), x2, x ln(x), ex − 1, x(1− x).

7.3 Consider the two-point BVP

−u′′(x) = 1, 0 < x < 1, u(0) = u(1) = 0.

Let Th : xj =
j
4
, j = 0, 1, 2, 3, 4 denote a partition of the interval 0 < x < 1 into four

subintervals of equal length h = 1/4. Let Vh be the corresponding space of continuous

piecewise liner functions vanishing at x = 0 and x = 1.

(a) Compute a finite element approximation U ∈ Vh to the above BVP.

(b) Prove that U ∈ Vh is unique.

7.5 (∗) Consider the two-point BVP, for x ∈ I = (0, 1):

−(a(x)u′(x))′ = f(x)

u(0) = 0, a(1)u′(1) = g1,

where a is a positive function and g1 a constant.

(a) Derive the variational formulation of the above problem.

(b) Discuss how the boundary conditions are implemented.

7.6 Consider the two-point BVP, for x ∈ I = (0, 1),

−u′′(x) = 0

u(0) = 0, u′(1) = 7.

Divide the interval I into two subintervals of length h = 1
2
. Let Vh be the corresponding

space of continuous piecewise linear functions vanishing at x = 0.

(a) Formulate a finite element method for the above problem.

(b) Calculate by hand the finite element approximation U ∈ Vh to the above BVP.

(c) Study how the boundary condition at x = 1 is approximated.
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7.7 (∗) Consider the two-point BVP

−u′′(x) = 0, 0 < x < 1, u′(0) = 5, u(1) = 0.

Let Th : xj = j
N
, j = 0, 1, . . . , N, h = 1/N denote a uniform partition of the interval

0 < x < 1 into N subintervals. Let Vh be the corresponding space of continuous

piecewise linear functions.

(a) Use Vh, withN = 3, and formulate a finite element method for the above problem.

(b) Compute the finite element approximation U ∈ Vh assuming N = 3.

7.8 Consider the problem of finding a solution approximation to

−u′′(x) = 1, 0 < x < 1, u′(0) = u′(1) = 0.

Let Th be a partition of the interval 0 < x < 1 into two subintervals of equal length

h = 1
2
. Let Vh be the corresponding space of continuous piecewise linear functions.

(a) Can you find an exact solution to the above problem by integrating twice?

(b) Compute a finite element approximation U ∈ Vh to u if possible.

7.11 Consider the finite element method applied to

−u′′(x) = 0, 0 < x < 1, u(0) = α, u′(1) = β,

where α and β are given constants. Assume that the interval [0, 1] is divided into

three subintervals of equal length h = 1/3 and that {φj}3j=0 is a nodal basis of Vh, the

corresponding space of continuous piecewise linear functions.

(a) Verify that the ansatz

U(x) = αφ0(x) + ζ1φ1(x) + ζ2φ2(x) + ζ3φ3(x),

yields the following system of equations

(1)
1

h

−1 2 −1 0

0 −1 2 −1

0 0 −1 1



α

ζ1

ζ2

ζ3

 =

0

0

β

 .

(b) If α = 2 and β = 3 show that (1) can be reduced to

1

h

 2 −1 0

−1 2 −1

0 −1 1


ζ1

ζ2

ζ3

 =

2h−1

0

3

 .

(c) Solve the above system of equation to find U(x).
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7.13 Consider the following boundary value problem

−au′′(x) + bu(x) = 0, 0 ≤ x ≤ 1, u(0) = u′(1) = 0,

where a, b > 0 are constants. Let Th : 0 = x0 < x1 < . . . < xN = 1, be a non-

uniform partition of the interval 0 ≤ x ≤ 1 into N intervals of length hi = xi − xi−1,

i = 1, 2, . . . , N . Let Vh be the corresponding space of continuous piecewise linear

functions. Compute the stiffness and mass matrices.

7.14 Show that the FEM with mesh size h for the problem−u′′(x) = 1 0 < x < 1

u(0) = 7, u′(1) = 0,

with U(x) = 7φ0(x)+U1φ1(x)+ . . .+Umφm(x) leads to the linear system of equations

ÃŨ = b̃, where Ã ∈ Rm×(m+1), Ũ ∈ R(m+1)×1, b̃ ∈ Rm×1 are given by

Ã =
1

h


−1 2 −1 0 . . . 0

0 −1 2 −1 . . . 0

. . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 0

 , Ũ =


7

U1

...

Um

 , b̃ =


h
...

h

h/2

 .

The above reduces to AU = b, with

A =
1

h


2 −1 0 . . . 0

−1 2 −1 . . . 0

. . . . . . −1 2 −1

0 0 . . . −1 2

 , U =


U1

...

Um

 , b =


h+ 7

h
...

h

h/2

 .
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4. Chapter 8: Scalar initial value problems

8.5a) Compute the solution of

u̇(t) + a(t)u(t) = t2, 0 < t < T, u(0) = 1,

where a(t) = 4.
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5. Chapter 9: Initial boundary value problems in 1d

9.7 Consider the inhomogeneous problem
ut(x, t)− εuxx(x, t) = f(x, t), 0 < x < 1, t > 0

u(0, t) = ux(1, t) = 0, t > 0

u(x, 0) = u0(x), 0 < x < 1.

Show that for the corresponding stationary problem, ut = 0, one has

∥ux∥ ≤ 1

ε
∥f∥ .

9.13 Consider the wave equation
utt(x, t)− uxx(x, t) = 0, x ∈ R, t > 0

u(x, 0) = u0(x), x ∈ R

ut(x, 0) = v0(x), x ∈ R.

Plot the graph of u(x, 2) in the following cases:

(a) v0 = 0 and

u0(x) =

1, x < 0

0, x > 0.

(b) u0 = 0 and

v0(x) =


−1, −1 < x < 0

1, 0 < x < 1

0, |x| > 1.

8

david.cohen@chalmers.se


TMA683
David Cohen (david.cohen@chalmers.se)

HT 2022
Chalmers & GU

9

david.cohen@chalmers.se


TMA683
David Cohen (david.cohen@chalmers.se)

HT 2022
Chalmers & GU

6. Chapter 4: Propositions for solutions

4.1 Use the definitions of P(q)(0, 1) and of a subspace.

4.3 Every element v ∈ P(q)(0, 1) can be written as

v(t) =

q∑
j=0

χjt
j.

Use this in a VF of the problem.

4.4 See the lecture.

4.5 (a) The exact solution reads u(x) = x
2
(1− x).

(b) The residual reads R(x) = π2 (A sin(πx) + 4B sin(2πx))− 1.

(c) A = 4
π3 and B = 0.

4.6 (a) ok

(b)

R(x) = (π2 + 1)A sin(πx) + (4π2 + 1)B sin(2πx) + (9π2 + 1)C sin(3πx)− x.

(c)

A =
2

π(π2 + 1)
, B = − 1

π(4π2 + 1)
, C =

2

3π(9π2 + 1)

4.7 (a)

u(x) =
1

6
(π3 − x3) +

1

2
(x2 − π2)

(b)

R(x) = −U ′′(x)− x+ 1 =
1

4
ζ0 cos(

x

2
) +

9

4
ζ1 cos(

3x

2
)− x+ 1

(c)

ζ0 = 8(2π − 6)/π, ζ1 =
8

9
(
2

9
− 2

3
π)/π

4.8

U(x) = (16 sin(x) +
16

27
sin(3x))/π3 +

2

π2
x2
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7. Chapter 5: Propositions for solutions

5.1 Insert the definition of

λa(x) =
b− x

b− a
and λb(x) =

x− a

b− a
.

into

λa(x) + λb(x) and aλa(x) + bλb(x)

to answer the exercise.

5.2 Use the definition of the linear interpolant, see lecture.

5.3

Π1f(x) =



4− 11(x+ π)/(2π), −π ≤ x ≤ −π
2

5/4− (x+ π
2
)/(2π), −π

2
≤ x ≤ 0

1− 7x/(2π), 0 ≤ x ≤ π
2

3(x− π)/(2π), π
2
≤ x ≤ π

5.15 Observe that the term f ′(x0+x1

2
) does not depend on x and use the formula (a+b)(a−

b) = a2 − b2.

5.16 This is the local error of the midpoint rule. Use a Taylor expansion (with rest term)

of f about x = x0+x1

2
to show the exercise.
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8. Chapter 7: Propositions for solutions

7.1 (a) See lecture.

(b) See lecture.

(c) The following functions are admissible test functions:

sin(πx), x(1− x).

7.3 (a) See lecture.

(b) Assume that one has more than one solution to the FE and, using the FE for-

mulation, find a contradiction.

7.5 (a) Similar to the lecture.

(b) Consider possible additional terms in the last vector.

7.6 (a) Similar to the lecture.

(b) Long computation . . . .

(c) tba

7.7 (a) Find uh ∈ Vh such that∫ 1

0

uh(x)vh(x) dx = −5vh(0)

for all v ∈ V 0
h .

(b) The FE solution reads

uh(x) = α0φ0(x) + α1φ1(x) + α2φ2(x),

where φj are the hat functions and α0 = −5, α1 ≈ −3.333, α2 ≈ −1.667.

7.8 (a) Integrate the problem twice and do not forget the two integration constants.

(b) Observe that the resulting matrix from a FE discretisation is not invertible.

7.11 (a) Observe that one has non-homogeneous Dirichlet BC and hence need two spaces

(trial, resp. test)

V = {v : v, v′ ∈ L2(0, 1), v(0) = α} and V 0 = {v : v, v′ ∈ L2(0, 1), v(0) = 0}

for the VF (similarly for the FE formulation).

(b) ok

(c) One can use matlab to compute such solution.

7.13 Similar to the lecture.

7.14 Similar to the lecture.
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9. Chapter 8: Propositions for solutions

8.5a)

u(t) = e−4t +
1

32
(8t2 − 4t+ 1)

13
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10. Chapter 9: Propositions for solutions

9.7 Recall the definition of the L2-norm:

∥u∥2 = (u, u) =

∫ L

0

u(x)u(x) dx

and multiply the problem with an appropriate function and integrate (in space). Poin-

caré inequality could also be of some use.

9.13 One may use d’Alembet’s formula (wiki)

u(x, t) =
1

2
(u0(x− t)− u0(x+ t)) +

1

2

∫ x+t

x−t

v0(y) dy.

14
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