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Chapter 2: Mathematical tools (summary)

November 4, 2022

Goal: Introduce some (abstract) spaces and various mathematical tools. This will help us to solve
(numerically) ordinary and partial differential equations in the next chapters.

• A set V is called a vector space or linear space (VS) if, for all u, v, w ∈V and for all α,β ∈R one has

1. (u + v)+w = u + (v +w) = u + v +w (associativity)

2. u + v = v +u (commutativity)

3. There exists an element 0 ∈V such that u +0 = 0+u = u for all u ∈V (zero element)

4. For all u ∈V , there exists an element (−u) ∈V such that u + (−u) = 0 (inverse element)

5. α(βu) = (αβ)u =αβu (compatibility)

6. There exists 1 ∈R such that 1u = u for all u ∈V (identity element)

7. α(u + v) =αu +βv (distributivity)

8. (α+β)u =αu +βu (distributivity).

(Technical comment: the condition (identity element) is mostly needed if one considers VS on some-
thing else than R, see the further readings if you are interested).

The elements in V are called vectors (but they can be something else, like "normal" vectors, matri-
ces, functions, or sequences) and the elements in R are called scalars. The above axioms (rules) tell
us that we can do anything reasonable with vectors and scalars in a VS.

Example: The vector space of all polynomials, defined on R, of degree ≤ n is denoted by

P (n)(R) = {
a0 +a1x +a2x2 + . . .+an xn : a0, a1, . . . , an ∈R}

.

• Let V be a VS. A subset U ⊂V is called a subspace of V if αu +βv ∈U for all u, v ∈U and α,β ∈R.

• Let V be a VS. The space of all linear combinations of the elements v1, v2, . . . , vn ∈V is denoted by

span(v1, . . . , vn) = {a1v1 +a2v2 + . . .+an vn : a1, . . . , an ∈R} .

Example: span
(
1, x, x2

)= {
a01+a1x +a2x2 : a0, a1, a2 ∈R

}=P (2)(R).

• A set {v1, v2, . . . , vn} in a VS V is linearly independent if the equation

a1v1 +a2v2 + . . .+an vn = 0 ∈V

has only the trivial solution a1 = a2 = . . . = an = 0 ∈R. Else it is called linearly dependent.

Example: The set {1, x, x2} ⊂P (2)(R) is linearly independent.

• A set {v1, v2, . . . , vn} in a VS V is called a basis of V if the set is linearly independent and span(v1, . . . , vn) =
V . The dimension of V is then given by the number of elements of this set, here dim(V ) = n.

Example: The set {1, x, x2} is a basis of P (2)(R) and thus dim(P (2)(R)) = 3.

• A scalar product or inner product on a VS V is a map (·, ·) : V ×V → R such that, for all u, v, w ∈ V
and α ∈R, one has

1

david.cohen@chalmers.se


TMA683
David Cohen (david.cohen@chalmers.se)

HT 2022
Chalmers & GU

1. (u, v) = (v,u) (symmetry)

2. (u +αv, w) = (u, w)+α(v, w) (linearity)

3. (u,u) ≥ 0 (positivity)

4. (u,u) = 0 ∈R if and only if u = 0 ∈V .

• A VS V with an inner product is called an inner product space, which is denoted by (V , (·, ·)) or
(V , (·, ·)V ) or (V ,〈·, ·〉V ).

Such space has a norm defined by ‖v‖ = p
(v, v) for all v ∈V .

Example: The space of square integrable functions defined on the interval [a,b] is denoted by

L2([a,b]) = L2(a,b) = L2(a,b) =
{

f : [a,b] →R :
∫ b

a
| f (x)|2 dx <∞

}
.

It is equipped with the inner product

( f , g )L2 =
∫ b

a
f (x)g (x)dx

which induces the norm ∥∥ f
∥∥

L2 =
√

( f , f )L2 =
√∫ b

a
| f (x)|2 dx.

• Let (V , (·, ·)) be an inner product space and u, v ∈ V . The elements u and v are called orthogonal if
(u, v) = 0. Notation: u ⊥ v .

• Let (V , (·, ·)) be an inner product space and u, v ∈V . Cauchy–Schwarz inequality (CS) reads

|(u, v)| ≤ ‖u‖ ·‖v‖ .

• Let (V , (·, ·)) be an inner product space and u, v ∈V . The triangle inequality (4) reads

‖u + v‖ ≤ ‖u‖+‖v‖ .

• The space of continuous function defined on [a,b] is given by

C 0([a,b]) =C 0([a,b]) =C (0)(a,b) = {
f : [a,b] →R : f is continuous

}
and equipped with the norm ∥∥ f

∥∥
C 0([a,b]) = max

a≤x≤b
| f (x)|.

(Technical observation: one should have a suppremum sup in place of max, see further resources if
you are interested. We will try to avoid this technicality in the lecture, hopefully.)

Similarly, one can define the space of continuously differentiable functions

C 1([a,b]) =C 1([a,b]) =C (1)(a,b) = {
f : [a,b] →R : f , f ′ are continuous

}
and equipped with the norm∥∥ f

∥∥
C 1([a,b]) =

∥∥ f
∥∥

C 0([a,b]) +
∥∥ f ′∥∥

C 0([a,b]) = max
a≤x≤b

(| f (x)|+ | f ′(x)|).

Similarly, one can also define the space C k ([a,b]) of k time continuously differentiable functions.

(Technical observation: The above definition should be enough for us, but observe that a precise
definition of the above space can be found in the further resources below.)
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• For 1 ≤ p <∞, we consider the spaces

Lp ([a,b]) = Lp (a,b) = {
f : [a,b] →R :

∥∥ f
∥∥

Lp <∞}
,

with the Lp -norm ∥∥ f
∥∥

Lp =
(∫ b

a
| f (x)|p dx

)1/p

.

For ′′p =∞“, one has

L∞([a,b]) = L∞(a,b) = {
f : [a,b] →R :

∥∥ f
∥∥

L∞ <∞}
,

with the L∞-norm ∥∥ f
∥∥

L∞ = max
a≤x≤b

| f (x)|.

(Technical observation: one should have an ess.sup in place of the maximum. But you can forget this
comment for the present lecture. We will stay in the easiest possible situations.)

Further resources:

• sv.wikipedia.org/LinjärtRum

• web.auburn.edu/InnerProduct

• sv.wikipedia.org/InreProduktrum

• sv.wikipedia.org/Lp

• sv.wikipedia.org/CS

• math.carleton.ca/Basis

• brilliant.org/Basis

• terrytao/SpaceOfFunctions

• ljll.math.upmc.fr/SpaceOfFunctions

3

david.cohen@chalmers.se
https://sv.wikipedia.org/wiki/Linj%C3%A4rt_rum
https://web.auburn.edu/holmerr/2660/Textbook/innerproduct-print.pdf
https://sv.wikipedia.org/wiki/Inre_produktrum
https://sv.wikipedia.org/wiki/Lp-rum
https://sv.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_olikhet
https://people.math.carleton.ca/~kcheung/math/notes/MATH1107/wk09/09_basis_and_dimension.html
https://brilliant.org/wiki/bases/
https://terrytao.files.wordpress.com/2008/03/function_spaces1.pdf
https://www.ljll.math.upmc.fr/ledret/M1English/M1ApproxPDE_Chapter2.pdf

