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Chapter 3: Interpolation and numerical integration (summary)

November 10, 2022

Goals:
Interpolation: We want to pass a (simple) function through a given set of data points.

b
Numerical integration: We want to find numerical approximations of integrals f fx)dx.
a

e Let geNand a < b. Consider a continuous function f: [a, b] — R and (g + 1) distinct interpolation
points (xj,f(xj))7:0 with a = xp < x1 <...< x4 =b. Apolynomial 7, f € 29 (a, b) is an interpolant
for fif

ngf(xj)=f(x;) for j=0,1,2,...,q.

Example: Remembering that 229 (a, b) = span(1, x, X2, ..., x7), one gets the polynomial interpolant
q .
mgf(xX)=) ajx’.
j=0

The coefficients a; are then found using the conditions 7, f (x;) = f(x;) for j =0,1,...,4.

* Consider an interval [a, b] and a grid of (g + 1) distinct points xo = a < x1 <... < x4 = b. One defines
Lagrange polynomials by
b x-x;

i) =[]

j=0,j#i Xi — Xj

fori=0,1,...,g. One then has (no proof)
2D (a, b) = span (Ag(x), A1 (x),..., A4(x)).

The above permits to find the interpolant of f using another basis.

Example: Taking 229 (a, b) = span(1¢(x), A1 (x), ..., A4(x)), one gets the Lagrange interpolant
q
g f(x) =) fx)A;(x),
j=0
where A; are the Lagrange polynomials defined above. Obs: This gives the same interpolant poly-
nomial has above.
» Under some assumptions on the function f, the error of the linear interpolant n; f is given by
2

|1 f = Flloam = Ch* 1" oia iy

for p = 1,2 or co. Other error bounds have been seen in the lecture.

¢ Denote a partition of the interval [0, 1] into m+1 subintervalsby 75,:0=xp < X1 <... < X; < Xjp41 =
1, where hj = xj — xj-1 for j =1,2,...,m+ 1. We define the hat function {(pj};”:t)l by

X—Xj-1
T forx; 1 =x=<x;
, — ) XX . .
@jx)= = forxj<x<xju
0 else


david.cohen@chalmers.se

TMAG683 HT 2022
David Cohen (david.cohen@chalmers. se) Chalmers & GU

for j =1,...,m. The functions ¢y (x) and ¢+ (x) are defined as half hat functions.

With the above, one then defines the space of continuous piecewise linear functions on [0, 1] by

Vi =V3,(0,1) = {v: [0,1] =R : v cont. piecewise linear on Th} = span((po,(pl,...,<pm+1).

m+1
As usual, one has v(x) = Z (jp;j(x), where {; = v(x;), for any v € V},.
j=0

Consider a uniform partition of an interval [a, b], denoted 7, : xo = a < x; <... < b = Xp+1, and the
space of continuous piecewise linear functions on 7, V;, = span(gy, ..., ®m+1) with hat functions
¢ ;. The continuous piecewise linear interpolant of f is defined by

m+1
apf(x) =) fxpejx) for x€la,b).
=0

If f € 6% (a, b) one has, for instance, the following bound for the interpolation error for the contin-
uous piecewise linear interpolant

””hf—f”LP(u,b) <Ch* ”f"”Lv(a,b)’

for p=1,2 or co.

b
Let us give 3 classical quadrature rules to numerically approximate the integral f f(x)dx:
a

The midpoint rule reads

b
f f(x)dxz(b—a)f(a+b).
a

The trapezoidal rule reads
b b-a
a

The Simpson rule reads

b b—a a+b

f fdx= —— (f(a) +4f(—) +f(b)).

a 6 2

In practice, one first considers a (uniform) partition of the interval [a,b], a=xp < x1 <...<xy=Db,
where N is a given (large) integer. One then apply a quadrature rule (denoted by QF (xj, xj+1, f)
below) on each small subintervals:

b N-1
f fodx= )

j=09x;

Xj+

1 N-1
fedx~ Y QF(xj,xji1, /).
j=0
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