Chapter 3: Interpolation and numerical integration (summary)

November 10, 2022

Goals:

Interpolation: We want to pass a (simple) function through a given set of data points.
Numerical integration: We want to find numerical approximations of integrals $\int_{a}^{b} f(x) \mathrm{d} x$.

- Let $q \in \mathbb{N}$ and $a<b$. Consider a continuous function $f:[a, b] \rightarrow \mathbb{R}$ and $(q+1)$ distinct interpolation points $\left(x_{j}, f\left(x_{j}\right)\right)_{j=0}^{q}$ with $a=x_{0}<x_{1}<\ldots<x_{q}=b$. A polynomial $\pi_{q} f \in \mathscr{P}^{(q)}(a, b)$ is an interpolant for f if

$$
\pi_{q} f\left(x_{j}\right)=f\left(x_{j}\right) \quad \text { for } \quad j=0,1,2, \ldots, q
$$

Example: Remembering that $\mathscr{P}^{(q)}(a, b)=\operatorname{span}\left(1, x, x^{2}, \ldots, x^{q}\right)$, one gets the polynomial interpolant

$$
\pi_{q} f(x)=\sum_{j=0}^{q} a_{j} x^{j}
$$

The coefficients a_{j} are then found using the conditions $\pi_{q} f\left(x_{j}\right)=f\left(x_{j}\right)$ for $j=0,1, \ldots, q$.

- Consider an interval $[a, b]$ and a grid of $(q+1)$ distinct points $x_{0}=a<x_{1}<\ldots<x_{q}=b$. One defines Lagrange polynomials by

$$
\lambda_{i}(x)=\prod_{j=0, j \neq i}^{q} \frac{x-x_{j}}{x_{i}-x_{j}}
$$

for $i=0,1, \ldots, q$. One then has (no proof)

$$
\mathscr{P}^{(q)}(a, b)=\operatorname{span}\left(\lambda_{0}(x), \lambda_{1}(x), \ldots, \lambda_{q}(x)\right) .
$$

The above permits to find the interpolant of f using another basis.
Example: Taking $\mathscr{P}^{(q)}(a, b)=\operatorname{span}\left(\lambda_{0}(x), \lambda_{1}(x), \ldots, \lambda_{q}(x)\right)$, one gets the Lagrange interpolant

$$
\pi_{q} f(x)=\sum_{j=0}^{q} f\left(x_{j}\right) \lambda_{j}(x)
$$

where λ_{j} are the Lagrange polynomials defined above. Obs: This gives the same interpolant polynomial has above.

- Under some assumptions on the function f, the error of the linear interpolant $\pi_{1} f$ is given by

$$
\left\|\pi_{1} f-f\right\|_{L^{p}(a, b)} \leq C h^{2}\left\|f^{\prime \prime}\right\|_{L^{p}(a, b)}
$$

for $p=1,2$ or ∞. Other error bounds have been seen in the lecture.

- Denote a partition of the interval [0,1] into $m+1$ subintervals by $\tau_{h}: 0=x_{0}<x_{1}<\ldots<x_{m}<x_{m+1}=$ 1 , where $h_{j}=x_{j}-x_{j-1}$ for $j=1,2, \ldots, m+1$. We define the hat function $\left\{\varphi_{j}\right\}_{j=0}^{m+1}$ by

$$
\varphi_{j}(x)= \begin{cases}\frac{x-x_{j-1}}{h_{j}} & \text { for } x_{j-1} \leq x \leq x_{j} \\ \frac{x-x_{j+1}}{-h_{j+1}} & \text { for } x_{j} \leq x \leq x_{j+1} \\ 0 & \text { else }\end{cases}
$$

for $j=1, \ldots, m$. The functions $\varphi_{0}(x)$ and $\varphi_{m+1}(x)$ are defined as half hat functions.
With the above, one then defines the space of continuous piecewise linear functions on $[0,1]$ by

$$
V_{h}=V_{h}(0,1)=\left\{v:[0,1] \rightarrow \mathbb{R} \quad: v \text { cont. piecewise linear on } \tau_{h}\right\}=\operatorname{span}\left(\varphi_{0}, \varphi_{1}, \ldots, \varphi_{m+1}\right) .
$$

As usual, one has $v(x)=\sum_{j=0}^{m+1} \zeta_{j} \varphi_{j}(x)$, where $\zeta_{j}=v\left(x_{j}\right)$, for any $v \in V_{h}$.

- Consider a uniform partition of an interval $[a, b]$, denoted $\tau_{h}: x_{0}=a<x_{1}<\ldots<b=x_{m+1}$, and the space of continuous piecewise linear functions on $\tau_{h}, V_{h}=\operatorname{span}\left(\varphi_{0}, \ldots, \varphi_{m+1}\right)$ with hat functions φ_{j}. The continuous piecewise linear interpolant of f is defined by

$$
\pi_{h} f(x)=\sum_{j=0}^{m+1} f\left(x_{j}\right) \varphi_{j}(x) \text { for } x \in[a, b] .
$$

If $f \in \mathscr{C}^{2}(a, b)$ one has, for instance, the following bound for the interpolation error for the continuous piecewise linear interpolant

$$
\left\|\pi_{h} f-f\right\|_{L^{p}(a, b)} \leq C h^{2}\left\|f^{\prime \prime}\right\|_{L^{p}(a, b)},
$$

for $p=1,2$ or ∞.

- Let us give 3 classical quadrature rules to numerically approximate the integral $\int_{a}^{b} f(x) \mathrm{d} x$:

The midpoint rule reads

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx(b-a) f\left(\frac{a+b}{2}\right) .
$$

The trapezoidal rule reads

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx \frac{b-a}{2}(f(a)+f(b)) .
$$

The Simpson rule reads

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx \frac{b-a}{6}\left(f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right) .
$$

In practice, one first considers a (uniform) partition of the interval $[a, b], a=x_{0}<x_{1}<\ldots<x_{N}=b$, where N is a given (large) integer. One then apply a quadrature rule (denoted by $Q F\left(x_{j}, x_{j+1}, f\right)$ below) on each small subintervals:

$$
\int_{a}^{b} f(x) \mathrm{d} x=\sum_{j=0}^{N-1} \int_{x_{j}}^{x_{j+1}} f(x) \mathrm{d} x \approx \sum_{j=0}^{N-1} Q F\left(x_{j}, x_{j+1}, f\right) .
$$

Further resources:

- www.dcode.fr
- www.maths.lth.se1, www.maths.lth.se2, www.maths.lth.se3.
- www.phys.libretexts.org
- www.khanacademy.org
- tutorial.math.lamar.edu

