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Chapter 5: FEM for two-point BVP (summary)

November 18, 2022

Goal: We use the theoretical and practical tools from the previous chapters to present and analyse
FEM for several BVP.

« For a positive integer g and f € L?(a, b), one defines its L?-projection as the polynomial Pf €
P D (a,b) verifying

b b
f fx)px)dx= f (PHx)px)dx forall pe PP (a,b)
a a

or shortly
(f:P)iztab) = (Pf,P)izap forall pe'Pia,b)

or (since monomials x/ are basis of 29 (a, b))
%) 2am = Pfrx) 2y for j=0,1,...,q.

Theoretical results: The L2-projection P f is unique and the best approximation of f in 229 (q, b)
in the L?>-norm.

¢ In anutshell, a Galerkin finite element method (FEM) for the BVP with homogeneous Dirichlet BC

—u'"(x)=f(x) for x€e(0,1)
u0)=0,u(l)=0

consists of the following

1. Multiply the DE by a test function v € V% = {v: [0,1] = R: v,v' € L?(0,1) and v(0) = v(1) = 0}.

2. Integrate the above over the domain [0, 1] and get the variational formulation of the problem
(VF)

1 1
Find ueV® suchthat f u'(x)v'(x)dx =f f@v(x)dx forall veV°
0 0

or shortly
Find ueV® suchthat (W,v);z201 = Vzey YveV’.

3. Specify the finite dimensional space V,? c V9 defined as V}‘l) = span(gy,...,¢n), for the hat
functions ¢; defined on a uniform partition of [0,1] with mesh h = ﬁ Consider the FE
problem

Find up€ V}(l) such that (u;l, U;Z)LZ(O,I) = (f, vl’l)Lz(O,l) VUh € Vl’(l)
4. Insert the ansatz -
up(x) =) {pj(x)
j=1
into the FE problem and take vy, = ¢;, fori = 1,..., m, to get a linear system of equation for the
unknown { = ({1,...,{m):
S(=h.


david.cohen@chalmers.se

TMAG683 HT 2022
David Cohen (david. cohen@chalmers. se) Chalmers & GU

Here, S is termed the stiffness matrix (with entries s;; = ((p'l.,(p’j) 2o, for i,j=1,...,m) and
b the load vector (with entries b; = (f,¢;)12(o,1) for i = 1,...,m). Solving this linear system of
equations gives us the vector ¢ and then the FE approximation

up(x) = ) §pj(x)
j=1

to the exact solution u of the above BVP!

 In order to get a FE approximation to the BVP (a > 0 and f are (nice and) given)

—(a(x)u'(x))' = f(x) for xe€(0,1)
u0)=0 and u(1)=0

we proceed as usual:

1. Define the test/trial space Hy = {v: [0,1] = R: v,v' € L*(0,1), v(0) = v(1) = 0}, multiply the DE
with a test function v € Hy, integrate over the domain [0, 1] and get the VF

1 1
Findue H, such that f a(x)u' (x)v'(x)dx = f fvxdx YveH.
0 0

Observe that the trial and test spaces are the same since the BVP has homogeneous Dirichlet BC.

2. Define the finite dimensional space V,? = {v: [0,1] = R: viscont. pw. linear on T}, v(0) = v(1) = O},
1

m+lt

Observe that V;” = span(¢1,...,¢m,) © Hj with the hat functions ¢;.

The FE problem then reads

where as usual T}, is a uniform partition with mesh h =

1 1
Findu, € V) such that f a(x)uy, (x) v}, (x)dx :f f@vp(0dx Yo, e V).
0 0

The above is also called cG(1) FE (for linear continuous Galerkin FE).
m
3. Choosing vy = @; for i = 1,...,m, writing uy(x) = Z Cipjx) € V;l), and inserting everything

j=1
into the FE problem gives the following linear system of equations
S¢=b,

1
where the m x m stiffness matrix S has entries s;; = [ a(x)(p;-(x)(p;- (x)dx and the m x 1 load
0

1

vector b has entries b; = f f(x);(x)dx. Formulas for these entries can be found in the book.
0
Solving this system gives the vector { and in turns the FE approximation uy,.

» The above needs minor adaptations when dealing with other BC.

Let us for example derive a FE approximation for the following BVP
—u"(x)+4u(x)=0 for x€(0,1)
u(0=a and u(l) =4,

where a # 0 and 8 # 0 are given real number. Such boundary conditions are called non-homogeneous
Dirichlet boundary conditions.

The derivation of a numerical approximation for solutions to the above problem is given by
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1. Define the trial space V = {v: [0,1]1 = R: v,v' € L?(0,1),v(0) = @, v(1) = B} and the test space
VO ={v: 10,11 = R: v,v' € L?(0,1),v(0) = v(1) = 0}. Multiply the DE with a test function v €
VY, integrate over the domain [0, 1] and get the VF

1 1
Findue V such that fu'(x)v’(x)dx+4f u(x)v(x)dx=0 VveV.
0 0

2. Next, define the finite dimensional spaces

Vi ={v: 10,11 = R: vis cont. pw. linear on T;, andv(0) = a, v(1) = #} and

VP ={v: 0,11 - R: vis cont. pw. linear on Ty, v(0) = v(1) = 0}, where as before T, is a uni-
form partition with mesh h = ﬁ Observe that Vj, = span(gg, @1,...,0m, ¢m+1) < V and
V}? =span(gi,...,m) < V0 with the hat functions Qj.
The FE problem then reads

1 1
Finduj, € V;, such that f u), (x) v}, (x) dx+4f up(xX)vy(x)dx Yvpe V}?.
0 0

m+1
3. Choosing vy, = ¢;, writing uj,(x) = Z (jp;j(x) with {o = @ and {;+1 = B (due to the non-
j=0

homogeneous Dirichlet BC), and inserting everything into the FE problem gives the following
linear system of equations
(S+4M)C{=b,

1
where the m x m stiffness matrix S has entries s;; = f (p'i (x)(p;- (x) dx, see above for details, the
0

1
m x m mass matrix M has entries m;; = f @i(x)@;j(x)dx, and the m x 1 vector b has entries
0

bi = —a(@y, @)z — PPy, @) 12 — 4o, @) 12 — 4B(@m+1, ;) 12 The entries of the matrices
S and M as well as of the vector b can be computed exactly.

Solving this system gives the vector ¢ and in turns the FE approximation uy,.

¢ Let us finally consider the problem of finding a numerical approximation of solutions to the BVP

—au'(x)+bu'(x)=r for x€(0,1)
u0)=0 and u'(1)=4,

where f# 0, a,b > 0, and r are given real number. One has a homogeneous Dirichlet boundary
conditions for x = 0 and non-homogeneous Neumann boundary conditions for x = 1.

For ease of presentation we take a = b = r = 1 and derive a FE approximation as follows

1. Define the space V = {v: [0,1] = R: v,v' € L*(0,1), v(0) = 0}. Multiply the DE with a test func-
tion v € V, integrate over the domain [0, 1] and get the VF

1
Findue V such that (u’,v’)Lz+(u',v)Lz:f v(x)dx+ Bv(l) VvelV.
0

2. Next, define the finite dimensional space Vj, = {v: [0,1] = R: vis cont. pw. linear on Ty, v(0) = 0},

where as before T}, is a uniform partition with mesh h = ﬁ
Observe that Vi, = span(@y, ..., 9m, @m+1) © V, with the hat functions ¢ ;.

The FE problem then reads

1
Findup € Vi, suchthat (u},v))2+ (u), vp)2 :f vp(x)dx+ Bvy(1) Vv, € V.
0

3
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m+1

3. Choosing vy, = @;, writing uy(x) = Z (jg;j(x), observing that ¢, is a half hat function, and
j=1

inserting everything into the FE problem gives the following linear system of equations

(S+C)=b,
1
where the (m +1) x (m + 1) stiffness matrix S has entries s;; = f @ (x)(p’j(x) dx, the (m+1) x
0

1
(m + 1) convection matrix C has entries ¢;; = f (p’j(x)q)l-(x) dx, and the (m+1) x 1 vector b
0

1
has entries b; = f @i(x)dx + Be;(1). Detailed formulas for these entries can be found in the

book (Section 5.3). Solving this system gives the vector { and in turns the FE approximation
uy.

e Let f: (0,1) — R be bounded and continuous. Then, the BVP

-u"(x)=f(x) for x€(0,1)
u@®=0 and u(l)=0

is equivalent to the VF

Find ue<€%0,1)n H(} such that (u,v")2¢01) = (f, V)20 forall ve H&.

» Poincaré inequality reads: Let L > 0 and consider the open interval Q = (0,L). Assume that u €
H&(Q) ={v: Q—R: v,v € [2Q), v(0) = v(L) = 0}. Then, one has

Il 2y < Cr || W|| 2y -

e Apriori error estimate in the energy norm. Let f: (0,1) — R be bounded and continuous. Consider
the BVP

—u'"(x)=f(x) for x€e(0,1)
u0)=0 and u(1)=0.

Denote by uy, the solution to the corresponding FE problem (cG(1) FE). Assume that u € 62(0,1).
Then, there exists a C > 0 such that

lu—uplly<Chl| uH”LZ(O,l)’

where |vlg = Vv, g = /(V', V) [2(0,1) denotes the energy norm.

 For indication, and for a uniform partition of [0,1] denoted by Tj,: xo =0< x; < X2 <... < X, <
Xm+1 = 1 with element length/mesh denoted by &, we summarise the possible choices for the FE

spaces:
1. Dirichlet BC u(0) =0, u(1) = 0: test and trial spaces given by span(gy,...,m)-
2. Dirichlet BC u(0) = a # 0, u(1) = 0: trial given by span(pg, ¢1,...,¢n) and testby span(pi,...,om).
3. Dirichlet BC u(0) =0, u(1) = B # 0: trial given by span(¢y,...,0m, m+1) and testby span(@i,...,Qmn).
4. Dirichlet BC u(0) = a # 0, u(1) = g # 0: trial given by span(go, @1, ..., om+1) and testby span(p1,...,Qm).
5. Dirichlet/Neumann BC u(0) = 0, /(1) = § (zero or not): trial given by span(¢gs,...,¢@m+1) and

test by span(@i,...,@m+1).
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6. Neumann/Dirichlet BC #'(0) = a (zero or not), u(1) = 0: trial given by span(¢y,...,¢) and
test by span(@o,...,Pm).

7. Dirichlet/Neumann BC u(0) = a # 0, u/(1) = § (zero or not): trial given by span(@o, ..., Om+1)
and test by span(@1,..., Pm+1)-

8. Neumann/Dirichlet BC u/(0) = a (zero or not), u(1) = § # 0: trial given by span(¢q, ..., m+1)
and test by span(@o,...,Pm).

9. Neumann BC u/(0) = a, /(1) = B (zero or not): trial given by span(¢y,...,¢m+1) and test by
span(@g,...,Pm+1)-

Further resources:
e https://web.stanford.edu/class/energy281/FiniteElementMethod.pdf

e http://mitran-1lab.amath.unc.edu/courses/MATH762/bibliography/LinTextBook/chap6.
pdf

e https://www.youtube.com/watch?v=WwgrAH-IMOk&ab_channel=SeriousScience (good!)
¢ www.simscale.com

o wiki

o wiki

¢ cs.uchicago.edu

¢ youtube
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https://www.simscale.com/docs/simwiki/numerics-background/what-are-boundary-conditions/
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https://www.youtube.com/watch?v=LEGPIfBf05Q&ab_channel=PGE383AdvancedGeomechanics

