Chapter 5: FEM for two-point BVP (summary)

November 18, 2022

Goal: We use the theoretical and practical tools from the previous chapters to present and analyse FEM for several BVP.

• For a positive integer q and $f \in L^2(a,b)$, one defines its L^2 -projection as the polynomial $Pf \in \mathscr{P}^{(q)}(a,b)$ verifying

$$\int_{a}^{b} f(x)p(x) dx = \int_{a}^{b} (Pf)(x)p(x) dx \quad \text{for all} \quad p \in \mathcal{P}^{(q)}(a,b)$$

or shortly

$$(f,p)_{L^{2}(a,b)} = (Pf,p)_{L^{2}(a,b)}$$
 for all $p \in \mathscr{P}^{(q)}(a,b)$

or (since monomials x^j are basis of $\mathcal{P}^{(q)}(a,b)$)

$$(f, x^j)_{L^2(a,b)} = (Pf, x^j)_{L^2(a,b)}$$
 for $j = 0, 1, ..., q$.

Theoretical results: The L^2 -projection Pf is unique and the best approximation of f in $\mathscr{P}^{(q)}(a,b)$ in the L^2 -norm.

• In a nutshell, a Galerkin finite element method (FEM) for the BVP with homogeneous Dirichlet BC

$$\begin{cases} -u''(x) = f(x) & \text{for } x \in (0,1) \\ u(0) = 0, u(1) = 0 \end{cases}$$

consists of the following

- 1. Multiply the DE by a test function $v \in V^0 = \{v : [0,1] \to \mathbb{R}: v, v' \in L^2(0,1) \text{ and } v(0) = v(1) = 0\}.$
- 2. Integrate the above over the domain [0,1] and get the variational formulation of the problem (VF)

Find
$$u \in V^0$$
 such that $\int_0^1 u'(x)v'(x) dx = \int_0^1 f(x)v(x) dx$ for all $v \in V^0$

or shortly

Find
$$u \in V^0$$
 such that $(u', v')_{L^2(0,1)} = (f, v)_{L^2(0,1)} \quad \forall v \in V^0$.

3. Specify the finite dimensional space $V_h^0 \subset V^0$ defined as $V_h^0 = \operatorname{span}(\varphi_1, \dots, \varphi_m)$, for the hat functions φ_j defined on a uniform partition of [0,1] with mesh $h = \frac{1}{m+1}$. Consider the FE problem

Find
$$u_h \in V_h^0$$
 such that $(u'_h, v'_h)_{L^2(0,1)} = (f, v_h)_{L^2(0,1)} \quad \forall v_h \in V_h^0$

4. Insert the ansatz

$$u_h(x) = \sum_{j=1}^m \zeta_j \varphi_j(x)$$

into the FE problem and take $v_h = \varphi_i$, for i = 1, ..., m, to get a linear system of equation for the unknown $\zeta = (\zeta_1, ..., \zeta_m)$:

$$S\zeta = b$$
.

Here, S is termed the stiffness matrix (with entries $s_{ij} = (\varphi'_i, \varphi'_j)_{L^2(0,1)}$ for i, j = 1, ..., m) and b the load vector (with entries $b_i = (f, \varphi_i)_{L^2(0,1)}$ for i = 1, ..., m). Solving this linear system of equations gives us the vector ζ and then the FE approximation

$$u_h(x) = \sum_{j=1}^{m} \zeta_j \varphi_j(x)$$

to the exact solution u of the above BVP!

• In order to get a FE approximation to the BVP (a > 0 and f are (nice and) given)

$$\begin{cases} -(a(x)u'(x))' = f(x) & \text{for } x \in (0,1) \\ u(0) = 0 & \text{and } u(1) = 0 \end{cases}$$

we proceed as usual:

1. Define the test/trial space $H_0^1 = \{v \colon [0,1] \to \mathbb{R} \colon v, v' \in L^2(0,1), v(0) = v(1) = 0\}$, multiply the DE with a test function $v \in H_0^1$, integrate over the domain [0,1] and get the VF

Find
$$u \in H_0^1$$
 such that $\int_0^1 a(x)u'(x)v'(x) dx = \int_0^1 f(x)v(x) dx \quad \forall v \in H_0^1$.

Observe that the trial and test spaces are the same since the BVP has homogeneous Dirichlet BC.

2. Define the finite dimensional space $V_h^0 = \{v \colon [0,1] \to \mathbb{R} : v \text{ is cont. pw. linear on } T_h, v(0) = v(1) = 0\}$, where as usual T_h is a uniform partition with mesh $h = \frac{1}{m+1}$. Observe that $V_h^0 = \operatorname{span}(\varphi_1, \dots, \varphi_m) \subset H_0^1$ with the hat functions φ_j .

The EE problem then reads

The FE problem then reads

Find
$$u_h \in V_h^0$$
 such that $\int_0^1 a(x) u_h'(x) v_h'(x) dx = \int_0^1 f(x) v_h(x) dx \quad \forall v_h \in V_h^0$.

The above is also called cG(1) FE (for linear continuous Galerkin FE).

3. Choosing $v_h = \varphi_i$ for i = 1, ..., m, writing $u_h(x) = \sum_{j=1}^m \zeta_j \varphi_j(x) \in V_h^0$, and inserting everything into the FE problem gives the following linear system of equations

$$S\zeta = b$$
,

where the $m \times m$ stiffness matrix S has entries $s_{ij} = \int_0^1 a(x) \varphi_i'(x) \varphi_j'(x) \, \mathrm{d}x$ and the $m \times 1$ load vector b has entries $b_i = \int_0^1 f(x) \varphi_i(x) \, \mathrm{d}x$. Formulas for these entries can be found in the book. Solving this system gives the vector ζ and in turns the FE approximation u_h .

The above needs minor adaptations when dealing with other BC.
Let us for example derive a FE approximation for the following BVP

$$\begin{cases} -u''(x) + 4u(x) = 0 & \text{for } x \in (0,1) \\ u(0) = \alpha & \text{and } u(1) = \beta, \end{cases}$$

where $\alpha \neq 0$ and $\beta \neq 0$ are given real number. Such boundary conditions are called non-homogeneous Dirichlet boundary conditions.

The derivation of a numerical approximation for solutions to the above problem is given by

1. Define the trial space $V = \{v : [0,1] \to \mathbb{R} : v, v' \in L^2(0,1), v(0) = \alpha, v(1) = \beta\}$ and the test space $V^0 = \{v : [0,1] \to \mathbb{R} : v, v' \in L^2(0,1), v(0) = v(1) = 0\}$. Multiply the DE with a test function $v \in V^0$, integrate over the domain [0,1] and get the VF

Find
$$u \in V$$
 such that
$$\int_0^1 u'(x) v'(x) dx + 4 \int_0^1 u(x) v(x) dx = 0 \quad \forall v \in V^0.$$

2. Next, define the finite dimensional spaces

 $V_h = \left\{v \colon [0,1] \to \mathbb{R} \colon v \text{ is cont. pw. linear on } T_h \text{ and } v(0) = \alpha, v(1) = \beta\right\} \text{ and } V_h^0 = \left\{v \colon [0,1] \to \mathbb{R} \colon v \text{ is cont. pw. linear on } T_h, v(0) = v(1) = 0\right\}, \text{ where as before } T_h \text{ is a uniform partition with mesh } h = \frac{1}{m+1}. \text{ Observe that } V_h = \text{span}(\varphi_0, \varphi_1, \ldots, \varphi_m, \varphi_{m+1}) \subset V \text{ and } V_h^0 = \text{span}(\varphi_1, \ldots, \varphi_m) \subset V^0 \text{ with the hat functions } \varphi_j.$ The FE problem then reads

Find
$$u_h \in V_h$$
 such that
$$\int_0^1 u_h'(x) v_h'(x) dx + 4 \int_0^1 u_h(x) v_h(x) dx \quad \forall v_h \in V_h^0.$$

3. Choosing $v_h = \varphi_i$, writing $u_h(x) = \sum_{j=0}^{m+1} \zeta_j \varphi_j(x)$ with $\zeta_0 = \alpha$ and $\zeta_{m+1} = \beta$ (due to the non-homogeneous Dirichlet BC), and inserting everything into the FE problem gives the following linear system of equations

$$(S+4M)\zeta=b$$
,

where the $m \times m$ stiffness matrix S has entries $s_{ij} = \int_0^1 \varphi_i'(x) \varphi_j'(x) \, \mathrm{d}x$, see above for details, the $m \times m$ mass matrix M has entries $m_{ij} = \int_0^1 \varphi_i(x) \varphi_j(x) \, \mathrm{d}x$, and the $m \times 1$ vector b has entries $b_i = -\alpha(\varphi_0', \varphi_i')_{L^2} - \beta(\varphi_{m+1}', \varphi_i')_{L^2} - 4\alpha(\varphi_0, \varphi_i)_{L^2} - 4\beta(\varphi_{m+1}, \varphi_i')_{L^2}$. The entries of the matrices S and M as well as of the vector b can be computed exactly.

Solving this system gives the vector ζ and in turns the FE approximation u_h .

• Let us finally consider the problem of finding a numerical approximation of solutions to the BVP

$$\begin{cases} -au''(x) + bu'(x) = r & \text{for } x \in (0,1) \\ u(0) = 0 & \text{and } u'(1) = \beta, \end{cases}$$

where $\beta \neq 0$, a, b > 0, and r are given real number. One has a homogeneous Dirichlet boundary conditions for x = 0 and non-homogeneous Neumann boundary conditions for x = 1.

For ease of presentation we take a = b = r = 1 and derive a FE approximation as follows

1. Define the space $V = \{v : [0,1] \to \mathbb{R} : v, v' \in L^2(0,1), v(0) = 0\}$. Multiply the DE with a test function $v \in V$, integrate over the domain [0,1] and get the VF

Find
$$u \in V$$
 such that $(u', v')_{L^2} + (u', v)_{L^2} = \int_0^1 v(x) dx + \beta v(1) \quad \forall v \in V.$

2. Next, define the finite dimensional space $V_h = \{v \colon [0,1] \to \mathbb{R} : v \text{ is cont. pw. linear on } T_h, v(0) = 0\}$, where as before T_h is a uniform partition with mesh $h = \frac{1}{m+1}$. Observe that $V_h = \operatorname{span}(\varphi_1, \dots, \varphi_m, \varphi_{m+1}) \subset V$, with the hat functions φ_j .

The FE problem then reads

Find
$$u_h \in V_h$$
 such that $(u'_h, v'_h)_{L^2} + (u'_h, v_h)_{L^2} = \int_0^1 v_h(x) dx + \beta v_h(1) \quad \forall v_h \in V_h.$

3. Choosing $v_h = \varphi_i$, writing $u_h(x) = \sum_{j=1}^{m+1} \zeta_j \varphi_j(x)$, observing that φ_{m+1} is a half hat function, and inserting everything into the FE problem gives the following linear system of equations

$$(S+C)\zeta=b$$
,

where the $(m+1)\times (m+1)$ stiffness matrix S has entries $s_{ij}=\int_0^1 \varphi_i'(x)\varphi_j'(x)\,\mathrm{d}x$, the $(m+1)\times (m+1)$ convection matrix C has entries $c_{ij}=\int_0^1 \varphi_j'(x)\varphi_i(x)\,\mathrm{d}x$, and the $(m+1)\times 1$ vector b has entries $b_i=\int_0^1 \varphi_i(x)\,\mathrm{d}x+\beta\varphi_i(1)$. Detailed formulas for these entries can be found in the book (Section 5.3). Solving this system gives the vector ζ and in turns the FE approximation u_h .

• Let $f:(0,1)\to\mathbb{R}$ be bounded and continuous. Then, the BVP

$$\begin{cases} -u''(x) = f(x) & \text{for } x \in (0,1) \\ u(0) = 0 & \text{and } u(1) = 0 \end{cases}$$

is equivalent to the VF

Find $u \in \mathcal{C}^2(0,1) \cap H_0^1$ such that $(u',v')_{L^2(0,1)} = (f,v)_{L^2(0,1)}$ for all $v \in H_0^1$.

• Poincaré inequality reads: Let L > 0 and consider the open interval $\Omega = (0, L)$. Assume that $u \in H_0^1(\Omega) = \{v \colon \Omega \to \mathbb{R} : v, v' \in L^2(\Omega), v(0) = v(L) = 0\}$. Then, one has

$$||u||_{L^2(\Omega)} \leq C_L ||u'||_{L^2(\Omega)}.$$

• A priori error estimate in the energy norm. Let $f:(0,1)\to\mathbb{R}$ be bounded and continuous. Consider the BVP

$$\begin{cases} -u''(x) = f(x) & \text{for } x \in (0,1) \\ u(0) = 0 & \text{and } u(1) = 0. \end{cases}$$

Denote by u_h the solution to the corresponding FE problem (cG(1) FE). Assume that $u \in \mathcal{C}^2(0,1)$. Then, there exists a C > 0 such that

$$\|u - u_h\|_E \le Ch \|u''\|_{L^2(0,1)}$$

where $\|v\|_E = \sqrt{(v,v)_E} = \sqrt{(v',v')_{L^2(0,1)}}$ denotes the energy norm.

- For indication, and for a uniform partition of [0,1] denoted by T_h : $x_0 = 0 < x_1 < x_2 < ... < x_m < x_{m+1} = 1$ with element length/mesh denoted by h, we summarise the possible choices for the FE spaces:
 - 1. Dirichlet BC u(0) = 0, u(1) = 0: test and trial spaces given by $span(\varphi_1, ..., \varphi_m)$.
 - 2. Dirichlet BC $u(0) = \alpha \neq 0$, u(1) = 0: trial given by $span(\varphi_0, \varphi_1, ..., \varphi_m)$ and test by $span(\varphi_1, ..., \varphi_m)$.
 - 3. Dirichlet BC u(0) = 0, $u(1) = \beta \neq 0$: trial given by $span(\varphi_1, ..., \varphi_m, \varphi_{m+1})$ and test by $span(\varphi_1, ..., \varphi_m)$.
 - 4. Dirichlet BC $u(0) = \alpha \neq 0$, $u(1) = \beta \neq 0$: trial given by $span(\varphi_0, \varphi_1, ..., \varphi_{m+1})$ and test by $span(\varphi_1, ..., \varphi_m)$.
 - 5. Dirichlet/Neumann BC u(0) = 0, $u'(1) = \beta$ (zero or not): trial given by $span(\varphi_1, ..., \varphi_{m+1})$ and test by $span(\varphi_1, ..., \varphi_{m+1})$.

- 6. Neumann/Dirichlet BC $u'(0) = \alpha$ (zero or not), u(1) = 0: trial given by $span(\varphi_0, ..., \varphi_m)$ and test by $span(\varphi_0, ..., \varphi_m)$.
- 7. Dirichlet/Neumann BC $u(0) = \alpha \neq 0, u'(1) = \beta$ (zero or not): trial given by $span(\varphi_0, ..., \varphi_{m+1})$ and test by $span(\varphi_1, ..., \varphi_{m+1})$.
- 8. Neumann/Dirichlet BC $u'(0) = \alpha$ (zero or not), $u(1) = \beta \neq 0$: trial given by $span(\varphi_0, ..., \varphi_{m+1})$ and test by $span(\varphi_0, ..., \varphi_m)$.
- 9. Neumann BC $u'(0) = \alpha$, $u'(1) = \beta$ (zero or not): trial given by $span(\varphi_0, ..., \varphi_{m+1})$ and test by $span(\varphi_0, ..., \varphi_{m+1})$.

Further resources:

- https://web.stanford.edu/class/energy281/FiniteElementMethod.pdf
- http://mitran-lab.amath.unc.edu/courses/MATH762/bibliography/LinTextBook/chap6.pdf
- https://www.youtube.com/watch?v=WwgrAH-IMOk&ab_channel=SeriousScience(good!)
- www.simscale.com
- wiki
- wiki
- cs.uchicago.edu
- youtube