Chapter 5: Scalar initial value problems (summary)

November 22, 2022

Goal: We study and approximate numerically solutions to IVP

$$
\left\{\begin{array}{l}
\dot{y}(t)=f(y(t)) \quad \text { for } \quad t \in(0, T] \\
y(0)=y_{0} .
\end{array}\right.
$$

Here, T, y_{0}, f are given and $\dot{y}(t)=\frac{\mathrm{d}}{\mathrm{d} t} y(t)$.

- Let $f, a:[0, T] \rightarrow \mathbb{R}$ be continuous with $a \geq 0$ bounded for instance. Let $y_{0} \in \mathbb{R}$. Consider the first order linear DE

$$
\left\{\begin{array}{l}
\dot{y}(t)+a(t) y(t)=f(t) \quad \text { for } \quad t \in(0, T] \\
y(0)=y_{0} .
\end{array}\right.
$$

The exact solution to the above IVP is given by the variation of constants formula (voc)

$$
y(t)=y_{0} \mathrm{e}^{-A(t)}+\int_{0}^{t} \mathrm{e}^{-(A(t)-A(s))} f(s) \mathrm{d} s,
$$

where $A(t)=\int_{0}^{t} a(s) \mathrm{d} s$.
If $a(t) \geq 0$ for all $t \in(0, T]$ (parabolic case), we have the following stability estimate

$$
|y(t)| \leq\left|y_{0}\right|+\int_{0}^{t}|f(s)| \mathrm{d} s
$$

If $a(t) \geq \alpha>0$ for all $t \in(0, T]$ (dissipative case), we have the following stability estimate

$$
|y(t)| \leq \mathrm{e}^{-\alpha t}\left|y_{0}\right|+\frac{1}{\alpha}\left(1-\mathrm{e}^{-\alpha t}\right) \max _{0 \leq s \leq T}|f(s)|
$$

- For $y: \mathbb{R} \rightarrow \mathbb{R}$ differentiable at t_{0} and a fixed (small) $h>0$, we define the following approximations of the derivative:

The forward difference

$$
\dot{y}\left(t_{0}\right) \approx \frac{y\left(t_{0}+h\right)-y\left(t_{0}\right)}{h}
$$

The backward difference

$$
\dot{y}\left(t_{0}\right) \approx \frac{y\left(t_{0}\right)-y\left(t_{0}-h\right)}{h} .
$$

The central difference or centered difference

$$
\dot{y}\left(t_{0}\right) \approx \frac{y\left(t_{0}+h\right)-y\left(t_{0}-h\right)}{2 h} .
$$

- Consider the IVP

$$
\left\{\begin{array}{l}
\dot{y}(t)=f(y(t)) \quad \text { for } \quad t \in(0, T] \\
y(0)=y_{0} .
\end{array}\right.
$$

Let $N \in \mathbb{N}$ and define the time step $k=\frac{T}{N}$ as well as the grid $0=t_{0}<t_{1}<\ldots<t_{N}=T$, where $t_{n}=n k$ for $n=0,1, \ldots, N$.

We define the following time integrators for the numerical approximations of solutions to the above IVP (starting with $y_{0}=y(0)$):

The (forward/explicit) Euler scheme

$$
y_{n+1}=y_{n}+k f\left(y_{n}\right)
$$

The backward/implicit Euler scheme

$$
y_{n+1}=y_{n}+k f\left(y_{n+1}\right)
$$

The Crank-Nicolson scheme

$$
y_{n+1}=y_{n}+\frac{k}{2}\left(f\left(y_{n}\right)+f\left(y_{n+1}\right)\right)
$$

These provide numerical approximations $y_{n} \approx y\left(t_{n}\right)$ to the exact solution of the IVP on the time $\operatorname{grid}\left(t_{n}\right)_{n=0}^{N}$.

- One can apply the above time integrators to the following system of linear DE

$$
\left\{\begin{array}{l}
M \dot{\zeta}(t)+S \zeta(t)=F(t) \quad \text { for } \quad t \in(0, T] \\
\zeta(0) \text { given }
\end{array}\right.
$$

resulting from a full discretisation of the heat equation, see the computer lab and the next chapter. In this case, M would be a mass matrix, S a stiffness matrix, and F would correspond to the load vector.
The Euler scheme then reads (with $\left.\zeta^{(0)}=\zeta(0)\right)$

$$
M \zeta^{(n+1)}=(M-k S) \zeta^{(n)}+k F\left(t_{n}\right)
$$

The backward Euler scheme then reads (with $\zeta^{(0)}=\zeta(0)$)

$$
(M+k S) \zeta^{(n+1)}=M \zeta^{(n)}+k F\left(t_{n+1}\right)
$$

The Crank-Nicolson scheme then reads (with $\zeta^{(0)}=\zeta(0)$)

$$
\left(M+\frac{k}{2} S\right) \zeta^{(n+1)}=\left(M-\frac{k}{2} S\right) \zeta^{(n)}+\frac{k}{2}\left(F\left(t_{n}\right)+F\left(t_{n+1}\right)\right)
$$

Observe that, for each of the above numerical schemes, one has to solve a linear system at each time step.

Further resources:

- In the film Hidden Figures, Katherine Goble resorts to the Euler method in calculating the re-entry of astronaut John Glenn from Earth orbit link
- www.wikipedia.org
- brown.edu
- ocw.mit.edu
- math.lamar.edu
- calcworkshop.com
- intmath.com

