Chapter 8: Fourier analysis (summary)

December 9, 2022

Goal: Study approximation of functions by simple trigonometric functions (sin and cos).
Applications: Signal processing, .mp3, .jpeg, etc.

- A function $f: \mathbb{R} \rightarrow \mathbb{C}$ such that there exists a $p>0$ with $f(x+p)=f(x)$ for all $x \in \mathbb{R}$ is called p periodic. The smallest such p is called the (prime) period of f.
- For an integrable p-periodic function f, the integral

$$
\int_{a}^{a+p} f(x) \mathrm{d} x
$$

does not depend on the starting point a.

- Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be 2π-periodic and Riemann integrable on $[-\pi, \pi]$. The series

$$
\sum_{n=-\infty}^{\infty} c_{n} \mathrm{e}^{\mathrm{i} n x} \quad \text { or } \quad \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)
$$

are called the Fourier series of $f(\mathrm{FS})$, where

$$
c_{n}:=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \mathrm{e}^{-\mathrm{i} n x} \mathrm{~d} x \quad \text { for } \quad n \in \mathbb{Z}
$$

and

$$
a_{0}:=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \mathrm{d} x, \quad a_{n}:=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) \mathrm{d} x, \quad b_{n}:=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) \mathrm{d} x \quad \text { for } \quad n \geq 1
$$

are called the Fourier coefficients of f. One has the relations

$$
a_{0}=2 c_{0}, \quad a_{n}=c_{n}+c_{-n}, \quad b_{n}=\mathrm{i}\left(c_{n}-c_{-n}\right) \quad \text { and } \quad c_{n}=\frac{a_{n}-\mathrm{i} b_{n}}{2}, \quad c_{-n}=\bar{c}_{n}
$$

Observe that $b_{n}=0$ if f is even (i. e. $f(-x)=f(x)$ for all x) and $a_{n}=0$ if f is odd (i. e. $f(-x)=-f(x)$ for all x).
Observe also that one can integrate over any interval of length 2π since f (and cosine and sine) is 2π-periodic.

- The set $\left\{\mathrm{e}^{\mathrm{i} n x}\right\}_{n \in \mathbb{Z}}$ is an orthogonal set on $[-\pi, \pi]$, that is

$$
\int_{-\pi}^{\pi} \mathrm{e}^{\mathrm{i} n x} \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} x= \begin{cases}0 & \text { if } n \neq k \\ 2 \pi & \text { else } .\end{cases}
$$

- Bessel's inequality reads: Let f be 2π-periodic and square integrable, then

$$
\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2} \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{2} \mathrm{~d} x
$$

In particular, this implies that the Fourier coefficients c_{n} go to zero as n goes to \pm infinity (RiemannLebesgue lemma). A similar formula exists for the coefficients a_{n} and b_{n} (see compendium) which implies that a_{n}, b_{n} go to zero as n goes to infinity. These facts are needed, for example, to prove convergence results on the Fourier series (see below).

- We recall the following definitions. A function $f:[a, b] \rightarrow \mathbb{R}$ is piecewise continuous (notation $f \in$ $P C([a, b]))$ if f is continuous on $[a, b]$ except perhaps at finitely many points $x_{1}, x_{2}, \ldots, x_{n} \in[a, b]$. At these points the left-hand and right-hand limits of f exist: $f\left(x_{j}-\right)=\lim _{h \rightarrow 0, h>0} f\left(x_{j}-h\right)$ and $f\left(x_{j}+\right)=\lim _{h \rightarrow 0, h>0} f\left(x_{j}+h\right)$. Similarly, f is piecewise smooth (notation $f \in P S\left([a, b]\right.$)) if $f, f^{\prime} \in$ $P C([a, b])$. Finally, $f \in P C(\mathbb{R})$, resp. $f \in P S(\mathbb{R})$, if f is piecewise continuous, resp. smooth, on every bounded interval $[a, b]$.
- Pointwise convergence of Fourier series: Consider f a 2π-periodic function and piecewise smooth on $\mathbb{R}($ i. e. in $P S(\mathbb{R}))$. Set $S_{N}^{f}(x):=\sum_{n=-N}^{N} c_{n} \mathrm{e}^{\mathrm{i} n x}$, where c_{n} are the Fourier coefficients of f. We have

$$
\lim _{N \rightarrow \infty} S_{N}^{f}(x)=\frac{1}{2}(f(x-)+f(x+)) \quad \forall x \in \mathbb{R}
$$

In particular, if f is continuous at $x, \lim _{N \rightarrow \infty} S_{N}^{f}(x)=f(x)$ and we see that the Fourier series converges, in this case, to the value of $f(x)$!

- Parseval's identity reads: For $f \in \mathscr{L}^{2}(-\pi, \pi)$ a piecewise smooth 2π-periodic function, one has

$$
\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{2} \mathrm{~d} x
$$

We now look at Fourier series of functions of arbitrary period.

- Using a simple change of variable, the Fourier series of a $2 L$-periodic function f is given by

$$
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{n \pi}{L} x\right)+b_{n} \sin \left(\frac{n \pi}{L} x\right)\right)
$$

with the Fourier coefficients

$$
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi}{L} x\right) \mathrm{d} x \quad \text { and } \quad b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) \mathrm{d} x
$$

We now look at Fourier series of non-necessary periodic functions.

- Let f be defined on the interval $[0, \pi]$ (for ease of presentation, one can do the same, see lecture for an interval $[0, L]$) and integrable. Using the even extension of f on $[-\pi, \pi]$ defined by

$$
f_{\text {even }}(-x)=f(x) \quad \text { for } \quad x \in[0, \pi] \quad \text { (observe that } \quad f_{\text {even }}(x)=f(x) \text { for } x \in[0, \pi] \text {) }
$$

one gets the Fourier cosine series of f

$$
f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n x)
$$

with the coefficients

$$
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos (n x) \mathrm{d} x
$$

Using the odd extension of f on $[-\pi, \pi]$ defined by

$$
f_{\text {odd }}(-x)=-f(x) \text { for } x \in(0, \pi] \text { and } f_{\text {odd }}(0)=0
$$

one gets the Fourier sine series of f

$$
f(x) \sim \sum_{n=1}^{\infty} b_{n} \sin (n x)
$$

with the coefficients

$$
b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin (n x) \mathrm{d} x
$$

- Derivative of Fourier series: Let f be a 2π-periodic, continuous and in $P S([-\pi, \pi])$, we have

$$
c_{n}^{\prime}=\mathrm{i} n c_{n}
$$

where c_{n} are the Fourier coefficients of f and c_{n}^{\prime} those of f^{\prime}. In terms of a_{n} and b_{n}, one has the relations $a_{n}^{\prime}=n b_{n}$ and $b_{n}^{\prime}=-n a_{n}$.

With this in hand, one has the following result:
Let f be 2π-periodic, continuous, and piecewise smooth and suppose that f^{\prime} is piecewise smooth.
If $\sum_{n=-\infty}^{\infty} c_{n} \mathrm{e}^{\mathrm{i} n x}$ is the Fourier series of $f(x)$, then $f^{\prime}(x)$ has the derived series $\sum_{n=-\infty}^{\infty} \mathrm{i} n c_{n} \mathrm{e}^{\mathrm{i} n x}$ for all x at which $f^{\prime}(x)$ exists. At jump points of f^{\prime}, the series converges to $\frac{1}{2}\left(f^{\prime}(x-)+f^{\prime}(x+)\right)$.

- Integral of Fourier series: Let f be 2π-periodic and in $P C(\mathbb{R})$ with Fourier coefficients c_{n}. Set $F(x)=$ $\int_{0}^{x} f(y) \mathrm{d} y$. If $c_{0}=0$ then the Fourier coefficients of F are given by

$$
C_{n}=\frac{c_{n}}{\mathrm{i} n} \text { for } n \neq 0
$$

and $C_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} F(x) \mathrm{d} x$. I. e. $F(x)=C_{0}+\sum_{n \neq 0} \frac{c_{n}}{\mathrm{i} n} \mathrm{e}^{\mathrm{i} n x}$. If $c_{0} \neq 0$, this series converges to $F(x)-c_{0} x$. (This comes from the fact that the integral of a periodic function may not be periodic: $f(x)=1$ is periodic but its integral $F(x)=x$ is not).

Further resources:

- wolfram.com (Fourier series)
- wikibooks.org (Fourier series)
- math.lamar.edu (periodic functions, orthogonal set)
- mathsisfun.com (Fourier series)
- khanacademy.org (Fourier series)
- intmath.com (Fourier series)

