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Linear Transformations — Matrices

Linear transformations on R3 are studied in linear algebra, and are
characterised by linearity:{

T (x + y) = T (x) + T (y), ∀x, y ∈ R3

T (λx) = λT (x), ∀λ ∈ R, x ∈ R3.

If x = (x1, x2, x3) then y = (y1, y2, y3) = T (x) can be written as
a matrix multiplication:y1

y2
y3

 =

a11 a12 a13
a21 a22 a23
a31 a32 a33


︸ ︷︷ ︸

A

x1
x2
x3

 ,

where A is constant.
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Images of the Basic Unit Vectors

Since (1, 0, 0) is transformed intoa11 a12 a13
a21 a22 a23
a31 a32 a33


1

0
0

 =

a11
a21
a31

 ,

the first column of A is the destination of (1, 0, 0).

Similarly, the second and third column tell us where (0, 1, 0) and
(0, 0, 1) go!
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Some Properties

• Matrix multiplication is not commutative, i.e. AB 6= BA

• Matrix multiplication is associative, i.e. (AB)C = A(BC)
• Some (but not all) matrices are invertible, depending on

whether the determinant det A is zero or not
• If det A 6= 0, then A is invertible and A−1 can be found

using Gaußian elimination (backslash in Matlab)
• If A is an orthogonal matrix, i.e. A⊺A = I, then A−1 = A⊺

• Whatever A is, the origin is never moved, i.e. A0 = 0
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Definition of Rigid Body Motion

A rigid body motion is composed of a rotation and a translation:

t

φ

If combined with a scaling, it becomes a similarity transformation.
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Representing Rigid Body Motions

Let R be a rotation matrix (later slides) and t be a vector. Then

y = Rx + t

represents a rigid body motion.

• Rigid body motions are not commutative
• Rigid body motions are associative
• Not a linear transformation — the origin is moved!
• We will see later how to write them using only a matrix

multiplication anyway!
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Representing Rotations — 2D

In 2D, rotations are almost always represented using the 2 × 2
matrix

R(φ) =
[
cos φ − sin φ
sin φ cos φ

]
,

which is an orthogonal matrix.

To rotate a point x = (x, y) and angle φ about the origin, we do

y = R(φ)x =
[
cos φ − sin φ
sin φ cos φ

] [
x
y

]
=

[
x cos φ − y sin φ
x sin φ + y cos φ

]
.
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Representing Rotations — 3D

In 3D, rotations around the three coordinate axes are written as

Rx(α) =

1 0 0
0 cos α − sin α
0 sin α cos α

 ,

Ry(β) =

 cos β 0 sin β
0 1 0

− sin β 0 cos β

 ,

Rz(γ) =

cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 .
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Representing Rotations — 3D

• Any 3D rotation can be obtained using Tait-Bryan angles as

R(α, β, γ) = Rx(α)Ry(β)Rz(γ)

• By performing different combinations of the rotations, we get
various Euler angle representations — no clear standard!

• It is often easier to think using an axis-angle representation,
e.g. Rodrigues’ formula:

R = I + sin φ[v]× + (1 − cos φ)[v]×2

Rigid Body Motion — Representing Rotations — 3D MVE560, Lecture 2, Chalmers



Representing Rotations — 3D

• Any 3D rotation can be obtained using Tait-Bryan angles as

R(α, β, γ) = Rx(α)Ry(β)Rz(γ)

• By performing different combinations of the rotations, we get
various Euler angle representations — no clear standard!

• It is often easier to think using an axis-angle representation,
e.g. Rodrigues’ formula:

R = I + sin φ[v]× + (1 − cos φ)[v]×2

Rigid Body Motion — Representing Rotations — 3D MVE560, Lecture 2, Chalmers



Representing Rotations — 3D

• Any 3D rotation can be obtained using Tait-Bryan angles as

R(α, β, γ) = Rx(α)Ry(β)Rz(γ)

• By performing different combinations of the rotations, we get
various Euler angle representations — no clear standard!

• It is often easier to think using an axis-angle representation,
e.g. Rodrigues’ formula:

R = I + sin φ[v]× + (1 − cos φ)[v]×2

Rigid Body Motion — Representing Rotations — 3D MVE560, Lecture 2, Chalmers



Rodrigues’ Formula

v

x

x‖

x⊥

v × x⊥

Rx⊥

Rx

φ

v × (v × x⊥)
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Rodrigues’ Formula Proof

We have x = x‖ + x⊥, where x‖ is parallel to v (and thus does
not change), and x⊥ is perpendicular to v. Note also that x⊥ and
v × x⊥ make up an orthogonal basis in the plane orthogonal to v.
It follows that

Rx⊥ = cos φ x⊥ + sin φ (v × x⊥)
= − cos φ (v × (v × x⊥)) + sin φ (v × x⊥)
= − cos φ (v × (v × x)) + sin φ (v × x).

Thus

Rx = Rx‖ + Rx⊥

= (v⊺x)v − cos φ (v × (v × x)) + sin φ (v × x)
= x + sin φ (v × x) + (1 − cos φ)(v × (v × x)).
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The Planar Case
Suppose we are working in the plane, and have a point (x, y).
The plane can be ‘embedded’ in 3D as the plane z = 1:

z = 0

z = 1

z

(x, y, 1)

x

y

Homogeneous Coordinates — The Planar Case MVE560, Lecture 2, Chalmers



The Planar Case (contd.)

• Each point in the plane z = 1 corresponds to a 3D-line
through the origin

• The line through (x, y, 1) includes (λx, λy, λ) for any scalar λ

• If λ 6= 0, we call (λx, λy, λ) homogeneous coordinates of the
point (x, y)

• Note that (λx, λy, 1) and (x, y, 1/λ) represent the same point
• When λ → ±∞ we obtain ideal points, (x, y, 0), infinitely far

away (on the line at infinity)
• This can be used to capture the difference between vectors

and points!

Möbius, Der barycentrische Calcul - ein neues Hülfsmittel zur analytischen Behandlung der Geometrie, 1827.
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The 3D Case

• Similarly to the 2D case, we add an extra coordinate that is
equal to one, i.e. the homogeneous coordinates for (x, y, z)
become (x, y, z, 1) (or (λx, λy, λz, λ) for any λ 6= 0).

• The homogeneous coordinates (x, y, z, 0) represent the point
infinitely far away in the direction (x, y, z)
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Revisiting Rigid Body Motions

Recall that a rigid body motion consisting of the rotation R and
the translation t is written as y = Rx + t.

As it turns out,

y = Rx + t =
[
R t

] [
x
1

]
,

so [
y
1

]
=

[
R t
0⊺ 1

]
︸ ︷︷ ︸

A

[
x
1

]
.

If we use homogeneous coordinates, we can represent a rigid body
motion as the matrix A above.
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The Pinhole Perspective Camera

z

(X, Y, Z)

z = f

x

y(
fX
Z , fY

Z , f
)

z = −f
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The Pinhole Perspective Camera (contd.)

A 3D point (X, Y, Z) is thus projected to (fX/Z, fY/Z, f) in the
image plane — we may omit the last coordinate:

(X, Y, Z) 7−→ (fX/Z, fY/Z).

Using homogeneous coordinates, we can write the projection as a
matrix multiplication:

fX
fY
Z

 =

f 0 0 0
0 f 0 0
0 0 1 0




X
Y
Z
1

 =

f 0 0
0 f 0
0 0 1


︸ ︷︷ ︸

K

[
I 0

] 
X
Y
Z
1

 .
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The Pinhole Perspective Camera (contd.)

• A camera positioned at t instead of the origin, and rotated a
rotation R, is represented by the matrix

P = KR⊺
[
I −t

]

• For us, the focal length f is not particularly interesting most
of the time — we can set it to f = 1 for simplicity and skip
K entirely
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Orthographic Cameras — Illustration
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