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Preface

The present text contains a number of projects on financial mathematics topics. The stu-
dents reading this text and carrying out the projects are assumed to be familiar with the
fundamental concepts in finance and financial mathematics presented for instance in [2]. A
short review of some of these concepts is to be found in Chapter 0 of the present text.
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Chapter 0

Background

0.1 Basic financial concepts

Financial assets

The term asset may be used to identify any resource capable of producing value and which,
under specific legal terms, can be bought and sold (i.e., converted into cash). Assets may be
tangible (e.g., lands, buildings, commodities, etc.) or intangible (e.g., patents, copyrights,
stocks, etc.). Assets are also divided into real assets, i.e, assets whose value is derived by
an intrinsic property (e.g., tangible assets), and financial assets, such as stocks, options,
bonds, etc., whose value is instead derived from a contractual claim on the income generated
by another (possibly real) asset. For example, upon holding shares of the Volvo stock (a
financial asset), we can make a profit from the production and sale of cars even if we do not
own an auto plant (a real asset). As we consider only financial assets in this text, the terms
“asset” and “financial asset” will be henceforth used interchangeably.

Price

The price of a financial asset is the value, measured in some units of currency (e.g. dollars),
at which the buyer and the seller agree to exchange ownership of the asset. The price is
chosen by the two parties as a result of some kind of “negotiation”. More precisely, the ask
price is the minimum price at which the seller is willing to sell the asset, while the bid price
is the maximum price that the buyer is willing to pay for the asset. A transaction occurs
when the bid price of a buyer matches the ask price of a seller, in which case the exchange
of the asset takes place at the corresponding price.

A generic financial asset will be denoted by U and its price at time t by ΠU(t). Prices are
generally positive, although some financial assets (e.g., forward contracts) have zero price.
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The asset price refers to the price per share of the asset, where “share” stands for the
minimum amount of an asset that can be traded. All prices in this text are given in a fixed
currency, which is however left unspecified.

Markets

Financial assets can be traded in exchange markets or over the counter (OTC). In the
former case all trades are subject to a common regulation, while in the latter the trading
conditions are more flexible and, to a certain degree, can be agreed upon by the individual
traders. The same asset can be traded both in an exchange market and OTC, usually for a
different price. The advantage of trading in regularized exchange markets is the higher level
of transparency and protection offered by standardized contracts.

Examples of official exchange markets, respectively of stocks and options, are the Nasdaq
market and the Chicago Board of Options Exchange (CBOE); currencies are example of
financial assets which are traded only OTC (Forex market).

A market maker is large investment company that continuously quotes both an ask price
and a bid price for immediate purchase/sell of an asset, thereby ensuring markets liquidity.
The difference between the bid and the ask price of an asset quoted by a market maker is
also called the bid-ask spread of the asset.

Any transaction in the market is subject to transaction costs (e.g., exchange fees) and
transaction delays (trading in real markets is not instantaneous).

Buyers and sellers of assets in a market will be called investors or agents.

Long and short position

An investor is said to short-sell N shares of an asset if the investor borrows the shares from
a third party and then sell them immediately on the market. The reason for short-selling
an asset is the expectation that the price of the asset will decrease in the future. In fact,
suppose that N shares of an asset U are short-sold at time t = 0 for the price ΠU(0) and let
T > 0. If ΠU(T ) < ΠU(0), then upon re-purchasing the N shares at time T , and returning
them to the lender, the short-seller will make the profit N(ΠU(0)− ΠU(T )).

An investor is said to have a long position on an asset if the investor profits from an
increase of its price (e.g., the investor owns the asset). Conversely, the investor is said to
have a short position on the asset if the investor will profit from a decrease of its value, as
it happens for instance when the investor is short-selling the asset.
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Stocks and dividends

The capital stock of a company is the part of the company equity capital that is made
publicly available for trading. Stocks are most commonly traded in official exchange markets.
For instance, over 300 company stocks are traded in the Stockholm exchange market. The
price per share of a generic stock at time t will be denoted by S(t).

A stock may occasionally pay a dividend to its shareholders, usually in the form of a cash
deposit. The amount (per share) of the dividend and its payment date must be declared
in advance (announcement date). The ex-dividend date is the first day before the
payment date (usually a few days before it) at which buying the stock does not entitle to
the dividend. An investor who buys the stock prior to the ex-dividend day and holds it until
the ex-dividend day is entitled to the dividend, even if the investor does not own the stock
at the payment day. At the ex-dividend day, the price of the stock often (but not always)
drops of roughly the same amount paid by the dividend.

Market index and ETF’s

A market index is a weighted average of the value of a collection of assets traded in one
or more exchange markets. For example, S&P500 (Standard and Poor 500) measures the
average value of 500 stocks traded at the New York stock exchange (NYSE) and NASDAQ-
markets. Market indexes can be regarded themselves as tradable assets. More precisely an
ETF (Exchange Traded Fund) on a market index is a financial asset whose value tracks
exactly the value of the market index (or a given fraction thereof). Hence one share of an
ETF on S&P500 will increase its value of 1% in one day if during that day S&P 500 has
gained 1%. An inverse ETF however will in the same example decrease its value of 1%.
Thus ETF’s give investors the possibility to speculate whether the market will gain or loose
value in the future.

Portfolio position and portfolio process

Consider an agent that invests on N assets U1, . . . ,UN during the time interval [0, T ]. Assume
that the agent trades on a1 shares of the asset U1, a2 shares of the asset U2,. . . , aN shares
of the asset UN . Here ai ∈ Z = {0,±1,±2,±3, . . . }, where ai < 0 means that the investor
has a short position on the asset Ui, while ai > 0 means that the investor has a long
position on the asset Ui (the reason for this interpretation will become soon clear). The
vector A = (a1, a2, . . . , aN) ∈ ZN is called a portfolio position, or simply a portfolio. The
portfolio value at time t is given by

VA(t) =
N∑
i=1

aiΠ
Ui(t), t ∈ [0, T ], (1)
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where ΠUi(t) denotes the price of the asset Ui at time t. The value of the portfolio measures
the wealth of the investor: the higher is V (t), the “richer” is the investor at time t. It follows
that when the price of the asset Ui increases, the value of the portfolio increases if ai > 0
and decreases if ai < 0, hence, as stated above, ai > 0 corresponds to a long position on
the asset Ui and ai < 0 to a short position. Portfolios can be added by using the linear
structure on ZN , namely if A,B ∈ ZN , A = (a1, . . . , aN), B = (b1, . . . , bN) are two portfolios
and α, β ∈ Z, then C = αA + βB is the portfolio C = (αa1 + βb1, . . . , αaN + βbN), whose
value is given by VC(t) = αVA(t) + βVB(t).

In the definition of portfolio position and portfolio value given above, the investor keeps the
same number of shares of each asset during the whole time interval [0, T ]. Suppose now that
the investor changes the position on the assets at some times t1, . . . , tM−1, where

0 = t0 < t1 < t2 < · · · < tM−1 < tM = T ;

for simplicity we assume that at each time t1, . . . , tM−1 the change in the portfolio position
occurs instantaneously. Let A0 denote the initial (at time t = t0 = 0) portfolio position of the
investor and Aj denote the portfolio position of the investor in the interval of time (tj−1, tj],
j = 1, . . . ,M . As positions hold for one instance of time only are clearly meaningless, we
may assume that A0 = A1, i.e., A1 is the portfolio position in the closed interval [0, t1]. The
vector (A1, . . . ,AM) is called a portfolio process. Denoting by aij the number of shares
of the asset i in the portfolio Aj, a portfolio process is equivalent to the N × M matrix
A = (aij), i = 1, . . . , N , j = 1, . . . ,M . The value V (t) of the portfolio process at time t is
given by the value of the corresponding portfolio position at time t as defined by (1), that is

V (t) =


VA1(t) =

∑N
i=1 ai1ΠUi(t), for t ∈ [0, t1]

VA2(t) =
∑N

i=1 ai2ΠUi(t), for t ∈ (t1, t2]
...

...

VAM (t) =
∑N

i=1 aiMΠUi(t), for t ∈ (tM−1, tM ]

.

The initial value V (0) = VA0 = VA1(0) of the portfolio, when it is positive, is called the
initial wealth (or capital) of the investor.

A portfolio process is said to be self-financing if the portfolio assets pay no dividends and
if no cash is ever withdrawn or infused in the portfolio. For example, let U1, U2, U3 be
non-dividend paying assets in the interval [0, T ]. Suppose that at time t0 = 0 the investor is
short 400 shares on the asset U1, long 200 shares on the asset U2 and long 100 shares on the
asset U3. This corresponds to the portfolio

A0 = (−400, 200, 100),

whose value is
VA0 = −400 ΠU1(0) + 200 ΠU2(0) + 100 ΠU3(0).

If this value is positive, the investor needs an initial wealth to set up this portfolio position:
the income derived from short selling the asset U1 does not suffice to open the desired long
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position on the other two assets. As mentioned before, we may assume that the investor
keeps the same position in the interval (0, t1], i.e., A1 = A0. The value of the portfolio
process at time t = t1 is

V (t1) = VA1(t1) = −400 ΠU1(t1) + 200 ΠU2(t1) + 100 ΠU3(t1).

Now suppose that at time t = t1 the investor buys 500 shares of U1, sells x shares of U2,
and sells all the shares of U3. Then in the interval (t1, t2] the investor has the new portfolio
position given by

A2 = (100, 200− x, 0),

and so the value of the portfolio process for t ∈ (t1, t2] is given by

V (t) = 100 ΠU1(t) + (200− x) ΠU2(t), t ∈ (t1, t2].

The limit of this quantity as t→ t+1 corresponds to the value of the portfolio “immediately
after” the position has been changed at time t1. Denoting

V (t+1 ) = lim
t→t+1

V (t)

and assuming that the prices are continuous, we have

V (t+1 ) = 100 ΠU1(t1) + (200− x) ΠU2(t1).

The difference between the value of the two portfolios immediately after and immediately
before the transaction is then

V (t+1 )− V (t1) = 100 ΠU1(t1) + (200− x) ΠU2(t1)

− (−400 ΠU1(t1) + 200 ΠU2(t1) + 100 ΠU3(t1))

= 500 ΠU1(t1)− xΠU2(t1)− 100 ΠU3(t1).

If this difference is positive, then the new portfolio cannot be created from the old one
without infusing extra cash. Conversely, if this difference is negative, then the new portfolio
is less valuable than the old one, the difference being equivalent to cash withdrawn from the
portfolio. Hence for self-financing portfolio processes we must have V (t+1 )− V (t1) = 0, and
similarly V (t+j ) − V (tj) = 0, for all j = 1, . . . ,M − 1. This implies in particular that the
number x of shares of the asset U2 to be sold at time t1 in a self-financing portfolio must be

x =
500ΠU1(t1)− 100ΠU3(t1)

ΠU2(t1)
.

Of course, x will be an integer only in exceptional cases, which means that perfect self-
financing strategies in real markets are almost impossible.

If V (t+j ) 6= V (tj), i.e., if the portfolio value is discontinuous at time tj, we say that the
portfolio process generates the cash flow

C(tj) = −(V (t+j )− V (tj))
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at time tj. A positive cash flow corresponds to cash removed from the portfolio (causing a
decrease of its value), while a negative cash flow corresponds to cash added to the portfolio.
For instance if at time t1 the investor sells shares of U1 and the income is not used to buy
shares of another asset, i.e., if it is removed from the portfolio, then V (t+1 ) < V (t1) and thus
C(t1) > 0. The total cash flow generated by the portfolio process in the interval [0, T ] is
Ctot =

∑M−1
j=1 C(tj) and can be negative, positive or zero.

If C(t1) = · · · = C(tM−1) = 0 and the assets pay no dividends, the portfolio process is
self-financing.

If an asset pays a dividend D at some time t∗ ∈ (0, T ), then the portfolio process generates
the positive cash flow D at time t∗ if the portfolio is long on the asset and the negative cash
flow −D if it is short on the asset (because the dividend is due to the original owner of the
asset). Constant portfolio positions are self-financing provided the assets pay no dividends.

Portfolios and assets return

Suppose that a portfolio process is opened at time t = 0 and closed at time t = T > 0, i.e., all
positions in the portfolio are liquidated at time T . If the portfolio process is self-financing,
then its return in the interval [0, T ] is given by

R(T ) = V (T )− V (0), (2)

where V (t) denotes the value of the portfolio at time t. The quantity V (T ) is also called
the pay-off of the portfolio. If the portfolio return is positive, the investor makes a profit
in the interval [0, T ], if it is negative the investor incurs in a loss. When V (0) > 0 we may
also compute the rate of return of the portfolio, which is given by

Rrate(T ) =
V (T )− V (0)

V (0)
(expressed in %). (3)

The total cash flow C generated by a (non-self-financing) portfolio process must be included
in the computation of the return of the portfolio in the interval [0, T ] according to the formula

R(T ) = V (T )− V (0) + C. (4)

Portfolio returns are commonly annualized by dividing the return R(T ) by the time T
expressed in fraction of years (e.g., T = 6 months = 1/2 years).

Consider now a portfolio that consists of a long position on one share of the asset U in the
interval [t, t + h] and assume that the asset pays no dividend in this time interval. The
annualized rate of return of this portfolio is given by

Rh(t) =
ΠU(t+ h)− ΠU(t)

hΠU(t)
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and is also called simply compounded rate of return of U . In the limit h → 0+ we
obtain the continuously compounded (or instantaneous) rate of return of the asset:

r(t) = lim
h→0+

Rh(t) =
1

ΠU(t)

dΠU(t)

dt
,

where we assume that the price of U is differentiable in time.

Asset returns are often computed using the logarithm of the price rather than the price itself.
For instance the quantity1

R̂h(t) = log ΠU(t+ h)− log ΠU(t) = log

(
ΠU(t+ h)

ΠU(t)

)
is called simply compounded log-return of the asset U in the interval [t, t+ h]. The use
of the log-price is convenient in some computations because ΠU(t) > 0, while log ΠU(t) ∈ R,
i.e., the boundary at zero of the asset price is removed when the log-price is employed. Since
R̂h(t)/h and Rh(t) have the same limit when h→ 0+, namely

lim
h→0+

1

h
R̂h(t) = lim

h→0+

log ΠU(t+ h)− log ΠU(t)

h
=
d log ΠU(t)

dt
= r(t),

then r(t) is also called continuously compounded (or instantaneous) log-return of the

asset. Note carefully that in general R̂h(t), Rh(t) and r(t) are not known at time t, because
they depend on the future value of the asset U ; an exception to this are money market assets
discussed later.

Historical volatility

The historical volatility of an asset measures the amplitude of the time fluctuations of the
asset price, thereby giving information on its level of uncertainty. It is computed as the
standard deviation of the log-returns of the asset based on historical data. More precisely,
let [t0, t] be some interval of time in the past, with t denoting possibly the present time, and
let T = t − t0 > 0 be the length of this interval. Let us divide [t0, t] into n equally long
periods, say

t0 < t1 < t2 < · · · < tn = t, ti − ti−1 = h, for all i = 1, . . . , n.

The set of points {t0, t1, . . . , tn} is called a uniform partition of the interval [t0, t]. Assume
for instance that the asset is a stock. Denote the log-return of the stock price in the interval
[ti−1, ti] as

R̂i = logS(ti)− logS(ti−1) = log

(
S(ti)

S(ti−1)

)
, i = 1, . . . , n. (5)

1Throughout this text, log x stands for the natural logarithm of x > 0, which is also frequently denoted
by lnx in the literature.
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The average of the log-returns is

R̂(t) =
1

n

n∑
i=1

R̂i =
1

n
log

(
S(t)

S(t0)

)
. (6)

The T-historical mean of log-return of the stock is obtained by annualizing the average
of log-returns, i.e., by dividing R̂(t) by the length h of the interval in which the log returns
are computed:

αT (t) =
1

nh
log

(
S(t)

S(t0)

)
=

1

T
log

(
S(t)

S(t0)

)
(T -historical mean of log-return). (7)

The (corrected) sample variance of the log-returns is

∆(t) =
1

n− 1

n∑
i=1

(R̂i − R̂(t))2.

The T-historical variance of the stock is obtained by annualizing ∆(t), i.e.,

σ2
T (t) =

1

h

1

n− 1

n∑
i=1

(R̂i − R̂(t))2 (T -historical variance). (8)

The square root of the T−historical variance is the T-historical volatility of the stock:

σT (t) =
1√
h

√√√√ 1

n− 1

n∑
i=1

(R̂i − R̂(t))2 (T -historical volatility). (9)

Note carefully that, as opposed to the historical mean, the historical volatility of the stock
depends not only on the stock prices in the time interval [t0, t] but also on the chosen partition
of this interval.

Suppose for example that t− t0 = T = 20 days, which is quite common in the applications,
and let t1, . . . , t20 be the market closing times at these days. Let h = 1 day = 1/365 years.
Then

σ20(t) =
√

365

√√√√ 1

19

n∑
i=1

(R̂i − R̂(t))2

is called the 20days-historical volatility. Two examples of the curve t→ σ20(t) are shown in
Figure 1.

Remark 0.1. The factor h = 1/252 is also commonly used in the calculation of market
parameters, since there are 252 trading days in one year (markets are closed in the week-
end).
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Figure 1: 20-days volatility of the Apple stock and the S&P500 index from January 1st, 2019
until December 31st, 2019.

Assets correlation

Consider again a uniform partition {t0, . . . , tn = t} of the past interval [t0, t] with length

T = t− t0. Let S(1)(t), S(2)(t) be the prices of two stocks. Let R̂
(1)
i , R̂

(2)
i be the log-returns

of each stock in the interval [ti−1, ti] and R(1), R(2) be the averages of log-returns. The
T-historical correlation of log-returns is computed with the formula

ρT (t) =

∑n
i=1(R̂

(1)
i − R̂(1))(R̂

(2)
i − R̂(2))√∑n

i=1(R̂
(1)
i − R̂(1))2

∑n
i=1(R̂

(2)
i − R̂(2))2

. (10)

Denoting by a1, a2 the n-dimensional vectors aj = (R̂
(j)
1 − R̂(j), R̂

(j)
2 − R̂(j), . . . , R̂

(j)
n − R̂(j)),

j = 1, 2, we can rewrite ρT (t) as

ρT (t) =
a1 · a2

|a1||a2|
= cos θ,

where · denotes the inner product of vectors, |aj| is the norm of the vector aj and θ ∈ [0, π]
is the angle between a1 and a2. Hence ρT (t) ∈ [−1, 1] and the closer is ρT (t) to 1 (resp. −1)
the more the stock prices have tendency to move in the same (resp. opposite) direction. For
instance, it is clear from Figure 1 that the Apple stock and S&P 500 were strongly positively
correlated during the period of time reported in the figure.

Financial derivatives. Options

A financial derivative (or derivative security) is an asset whose value depends on the
performance of one (or more) other asset(s), which is called the underlying asset. There
exist several types of financial derivatives, the most common being options, futures, forwards
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and swaps. Derivatives are available on many different types of underlying assets, includ-
ing currencies, market indexes, bonds, commodities, etc. In this section we discuss option
derivatives on a single asset, which could be for instance a stock.

A call option is a contract between two parties: the buyer, or owner, of the call and the
seller, or writer, of the call. The contract gives the owner the right, but not the obligation,
to buy the underlying asset in the future for a price fixed at the time when the contract is
stipulated, and which is called strike price of the call. If the buyer can exercise this right
only at some given time T in the future then the call option is called European, while if
the option can be exercised at any time earlier than or equal to T , then the option is called
American. The time T is called maturity time, or expiration date of the call. The
writer of the call is obliged to sell the asset to the buyer if the latter decides to exercise the
option. If the option to buy in the definition of a call is replaced by the option to sell, then
the option is called a put option.

In exchange for the option, the buyer must pay a premium to the seller (options are not
free). Suppose that the option is a European option with strike price K and maturity T .
Assume that the underlying asset is a stock with price S(t) at time t ≤ T and let Π0 be the
premium paid by the buyer to the seller. In which case is it then convenient for the buyer
to exercise the option at maturity? Let us define the pay-off of the European call as

Ycall = (S(T )−K)+ := max(0, S(T )−K) =

{
0 if S(T ) ≤ K
S(T )−K if S(T ) > K

.

Similarly, the pay-off of the European put is defined by

Yput = (K − S(T ))+ =

{
0 if S(T ) ≥ K
K − S(T ) if S(T ) < K

.

Clearly, the buyer should exercise the call option at maturity if and only if Ycall > 0, as in
this case it is cheaper to buy the stock at the strike price rather than at the market price.
Similarly the owner of the put should exercise if and only if Yput > 0, as in this case the
income generated by selling the stock at the strike price is higher then the income generated
by selling it at the market price. Hence the call or put option must be exercised at maturity if
and only if the pay-off is positive, in which case the option is said to expire in the money.
The return for the owner of the option is given by N(Ycall−Π0) in the case of the call and by
N(Yput−Π0) in the case of the put, where N is the number of option contracts in the buyer
portfolio. Note carefully that the buyer makes a profit only if the pay-off is greater than the
premium. One of the main problems in options pricing theory is to define a reasonable fair
value for the price Π0 of options (and other derivatives).

Let us introduce some further terminology. The European call (resp. put) with strike K is
said to be in the money at time t if S(t) > K (resp. S(t) < K). The call (resp. put) is
said to be out of the money at time t if S(t) < K (resp. S(t) > K). If S(t) = K, the (call
or put) option is said to be at the money at time t. The meaning of this terminology is
self-explanatory, see Figure 2.
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Figure 2: The call option with strike K = 9.5 is in the money in the upper region and out
of the money in the lower region. The put option with the same strike is in the money in
the lower region and out of the money in the upper region.

The pay-off of the American call exercised at time t is Y (t) = (S(t) − K)+, while for the
American put it is given by Y (t) = (K − S(t))+. The quantity Y (t) is also called intrinsic
value of the American option. In particular, the intrinsic value of an out-of-the-money
American option is zero.

Option markets

Option markets are relatively new compared to stock markets. The first one has been
established in Chicago in 1974 (the Chicago Board Options Exchange, CBOE). Market
options are available on different assets (stocks, debts, indexes, etc.) and with different
strikes and maturities. Most commonly, market options are of American style.

Clearly, the deeper in the money is the option, the higher will be its price in the market,
while the price of an option deeply out of the money is usually quite low (but still positive).
It is also clear that the buyer of the option is the party holding the long position on the
option, since the buyer owns the option and thus hopes for an increase of its value, while
the writer is the holder of the short position.

One reason why investors buy call options is to protect a short position on the underlying
asset. Suppose for instance that an investor short-sells 100 shares of a stock at time t = 0
for the price S(0), expecting that the price of the stock will decrease in the future. At the
same time, to alleviate the risk derived from the stock price moving in the opposite direction,
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the investor buys 100 shares of the American call option on the stock with strike K ≈ S(0)
and maturity T > 0. If at some time t0 ∈ (0, T ) the price of the stock is no lower than
S(0), the investor has the option to exercise the call, obtain 100 shares of the stock for the
price K ≈ S(0) and thus close the short position on the stock with reduced losses. At the
same fashion, investors buy put options to protect a long position on the underlying asset.
A trading position (particularly a short position) that is not covered by a suitable security
is said to be naked.

Of course, speculation is also an important factor in option markets. However the stan-
dard theory of options pricing is firmly based on the interpretation of options as derivative
securities and does not take speculation into account.

European, American and Asian derivatives

By far the majority of financial derivatives, including options other than simple calls and
puts, are traded OTC. Before discussing a few examples, it is convenient to introduce a
precise mathematical definition of European and American derivatives.

Given a function g : (0,∞) → R, the standard European derivative with pay-off Y =
g(S(T )) and maturity time T > 0 is the contract that pays to its owner the amount Y
at time T > 0. Here S(T ) is the price of the underlying stock at time T , while g is the
pay-off function of the derivative (e.g., g(x) = (x−K)+ for European call options, while
g(x) = (K − x)+ for European put options). Hence, the pay-off of standard European
derivatives depends only on the price of the stock at maturity and not on the earlier history
of the stock price. An important example of standard European derivative (other than call
and put options) is the digital option. Denote by H(x) the Heaviside function,

H(x) =

{
1, for x > 0
0, for x ≤ 0

, (11)

and let K,L > 0 be constants expressed in units of some currency (e.g., dollars). The
standard European derivative with pay-off function g(x) = LH(x−K) is called cash settled
digital call option with strike price K and notional value L; this derivative pays the
amount L if S(T ) > K, and nothing otherwise. The physically settled digital call
option has the pay-off function g(x) = xH(x − K), which means that at maturity the
buyer receives either the stock (when S(T ) > K), or nothing. Digital options are also called
binary options. Figure 3 shows the graph of the pay-off function for call, put and digital
call options with strike K = 10. Drawing the graph of the pay-off function of a derivative
helps to get a first insight on its properties.

If the pay-off depends on the history of the stock price during the interval [0, T ], and not
just on S(T ), the contract will be called non-standard European derivative. An example of
non-standard European derivative is the so-called Asian call option, the pay-off of which
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Figure 3: Pay-off function (continuous line) and return (dashed line) of some standard
European derivatives.

is given by

Y =

(
1

T

∫ T

0

S(t) dt−K
)

+

.

The price at time t of the European derivative with pay-off Y and maturity T will be denoted
by ΠY (t) (the expiration date is not included in the notation).

The term “European” signifies that the contract cannot be exercised before maturity T . For
a standard American derivative the buyer can exercise the contract at any time t ∈ (0, T ]
and so doing the buyer will receive the amount Y (t) = g(S(t)), where g is the pay-off function
of the American derivative. Non-standard American derivatives can be defined similarly to
the European ones, but with the further option of earlier exercise. The price at time t of the
American derivative with intrinsic value Y (t) and maturity T will be denoted Π̂Y (t).

Remark 0.2. The terminology “standard” and “non-standard” derivative is used in this
text for easy reference. It is not employed in the financial world.

17



Forward contracts

A forward contract with delivery price K and maturity (or delivery) time T on an asset
U is a European type financial derivative stipulated by two parties in which one agrees to
sell (and possibly deliver) to the other the asset U at time T in exchange for the cash K.
As opposed to options, forward contracts give the same right/obligation to the two parties,
as they are both obliged to fulfil their part of the agreement at maturity T (buy or sell
the asset for the price K). In particular, as there is no privileged position in a forward
contract, neither of the two parties has to pay a premium when the contract is stipulated,
that is to say, forward contracts are free; in fact, the terminology used for forward contracts
is “to enter a forward contract” and not “to buy/sell a forward contract”. The party who
must sell the asset at maturity is said to hold the short position on the forward, while the
party who must buy the asset is said to hold the long position, although strictly speaking
this terminology refers to the type of position on the underlying asset rather than on the
forward contract (which has zero value at all times). Hence the pay-off for a long position
in a forward contract on the asset U is

Ylong = (ΠU(T )−K),

while for the holder of the short position the pay-off is

Yshort = (K − ΠU(T )).

Forward contracts are traded OTC and most commonly on commodities or market indexes,
such as currency exchange rates, interest rates and volatilities. In the case that the underlying
asset is an index, forward contracts are also called swaps (e.g., currency swaps, interest rate
swaps, volatility swaps, etc.).

One purpose of forward contracts is to share risks. Irrespective of the movement of the
underlying asset in the market, its price at time T for the holders of the forward contract
will be K. The delivery price agreed by the two parties in a forward contract is also called
the forward price of the asset. More precisely, the T -forward price ForU(t, T ) of an asset
U at time t < T is the delivery price of a forward contract on U stipulated at time t and
with maturity T , while the current, actual price ΠU(t) of the asset is called the spot price.

As forward contracts are traded OTC, the forward price of an asset is not an objective
parameter (as opposed to the future price defined below), since different investors can agree
on different delivery prices at the same maturity date.

Futures contracts

Futures are standardized forward contracts listed in official exchange markets, called fu-
tures market, which include for instance the Chicago Mercantile Exchange (CME), the
New York Mercantile Exchange (NYMEX), the Chicago Board of Trade (CBOT) and the
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International Exchange Group (ICE). Unlike forward contracts, all futures contracts in a
futures market are subject to the same regulation. In particular, at any given time the
price for delivery of an asset at a fixed time in the future is the same for all investors. The
T-future price FutU(t, T ) of the asset U at time t ≤ T is defined as the delivery price at
time t ≤ T in the futures contract with maturity T on the asset U .

Holding a position in a futures contract in the futures market consists in the agreement to
receive as a cash flow the change in the future price of the underlying asset during the time in
which the position is held. The cash flow may be positive or negative. In a long position the
cash flow is positive when the future price goes up and it is negative when the future price
goes down. The cash flow is distributed in time through the so called margin account.
For example, assume that at t = 0 an investor opens a long position in a futures contract
expiring at time T . At the same time, the investor needs to open a margin account which
contains a certain amount of cash (usually, 10 % of the current value of the T -future price
for each contract opened). At t = 1 day, the amount FutU(1, T )−Fut(0, T ) will be added to
the account, if it positive, or withdrawn, if it is negative. The position can be closed at any
time t < T (multiple of days), in which case the total amount of cash flown in the margin
account is

(FutU(t, T )− FutU(t− 1, T )) + (FutU(t− 1, T )− FutU(t− 2, T ))+

· · ·+ (FutU(1, T )− FutU(0, T )) = (FutU(t, T )− FutU(0, T )).

If the long position is held up to the time of maturity, then the investor should buy the
underlying asset. However futures contracts are often cash settled and not physically
settled, which means that the delivery of the underlying asset does not occur, and the
equivalent value in cash is paid instead.
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An option on futures with maturity T > 0 and strike K is a contract that gives to the
owner the right to enter at time T in a futures contract (expiring at time S > T ) at the
future price K. In the case of a call (resp. put) option, the owner has the right to take a long
(resp. short) position on the futures contract and thus the pay-off will be (FutU(T, S)−K)+

(resp. (K − FutU(T, S))+). If the option on futures expires in the money, the owner can
decide to keep open the position on the futures contract or to close it immediately, thereby
cashing the pay-off of the option. Options on futures are example of second derivatives,
i.e., financial derivatives whose underlying asset is another derivative.

Bonds

The zero coupon bond (ZCB) with face (or nominal) value K and maturity T > 0
is the contract that promises to pay to its owner the amount K at time T in the future.
Without loss of generality it will be assumed from now on that K = 1, as owning one
share of the ZCB with face value K is clearly equivalent to own K shares of the ZCB with
face value 1. ZCB’s (and the related coupon bonds described below) are first issued in the
so-called primary market by national governments and private companies as a way to
borrow money and fund their activities; starting from the following market day, the ZCB’s
become tradable assets in the secondary market and thus their price changes in time. Let
B(t, T ) denote the price at time t of the ZCB with face value 1 and expiring at time T .
If the issuer of the ZCB announces at time t0 < T that it is unable to comply with the
payment of the face value at maturity, then the ZCB becomes worthless, i.e., B(t, T ) ≡ 0
for t ∈ [t0, T ] and the issuer of the ZCB is said to be in default. Suppose that the issuer
of the ZCB bears no risk of default in the interval [t, T ]. The investors who own shares of
the ZCB at maturity T will then receive at time T the promised face value, multiplied by
the number of shares owned, from the original issuer of the ZCB. The return per share of
this investment is R(t) = 1− B(t, T ), where t is the time at which the investor bought the
ZCB. Under normal market conditions, B(t, T ) < 1, for t < T , i.e., the investor pays less
than 1 today to receive 1 in the future, and thus R(t) > 0. However exceptions are possible;
for instance national bonds in Sweden with maturity shorter than 10 years yield currently
(2020) a negative return.

Bonds with long maturity typically pay coupons in addition to the face value. Let 0 < t1 <
t2 < · · · < tM = T be a partition of the interval [0, T ]. A coupon bond with maturity T ,
face value 1 and coupons c1, c2, . . . , cM ∈ (0, 1) is a contract that promises to pay the amount
ck at time tk and the amount 1 + cM at maturity T = tM . Most commonly the coupons are
all equal, i.e., c1 = c2 = · · · = cM , and paid annually (or semi-annually). The maturity of
coupon bonds can reach up to 30 or more years.
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Money market

The money market is a component of the debt market consisting of short term loans,
i.e., loan contracts with maturity between one day and one year. Examples of money market
assets are treasury bills, i.e., ZCB’s with short maturity (less than 1 year), commercial
papers, certificates of deposit, saving accounts and repurchase agreements (repo). In con-
trast to stock and option markets, money markets are typically accessible only by financial
institutions and not by private investors.

The value at time t of a generic asset in the money market will be denoted by B(t). The
difference B(t2) − B(t1), t1 < t2, determines the interest rate of the asset in the interval
[t1, t2]. In particular, let {t0 = 0, t1, . . . , tN = t} be a uniform partition of the interval [0, t]
with size h = ti − ti−1. The money market asset is said to have simply compounded
interest rate Rh(s) in the time period [s, s+ h], where s ∈ {t0, . . . , tN−1}, if the value of the
asset satisfies

B(s+ h) = B(s)(1 +Rh(s)h), s ∈ {t0, . . . , tN−1}. (12)

Inverting (12) we have

Rh(s) =
B(s+ h)−B(s)

hB(s)
, (13)

i.e., Rh(s) is the annualized rate of return of the asset in the interval [s, s+h]. Note carefully
that Rh(s) is known at time s (as opposed for instance to the return of stocks in the interval
[s, s + h], which is not known at time s). Iterating (12) the value at time t = tN of the
risk-free asset can be expressed in terms of the value at time t = 0 by the formula

B(t) = B(tN−1)(1 +Rh(tN−1)h) = B(tN−2)(1 +Rh(tN−2)h)(1 +Rh(tN−1)h)

= · · · = B(0)
N−1∏
i=0

(1 +Rh(ti)h). (14)

Example. Suppose that at time t0 = 0 an investor is borrowing the quantity B(0) =
1000000 Kr for one year with 3-months compounded interest rate, i.e., h = 1/4. Suppose
R1/4(t0) = 0.03 in the first quarter, R1/4(t1) = 0.02 in the second quarter, R1/4(t2) = 0.01 in
the third quarter and R1/4(t3) = 0.04 in the last quarter. Here t0 = 0, t1 = 1/4, t2 = 1/2,
t3 = 3/4. The debt of the investor at time t4 = 1 year is

B(t4) = B(t0)(1 +
1

4
R1/4(t0))(1 +

1

4
R1/4(t1))(1 +

1

4
R1/4(t2))(1 +

1

4
R1/4(t3)) ≈ 1025220 Kr.

If the investor borrows instead at the yearly compounded rate R1(t0) = 0.03 (i.e., h = 1), the
debt after 1 year is B(t4) = B(t0)(1 +R1(t0)) = 1030000 Kr. Notice that at time t = t0 the
investor knows R1/4(t0) and R1(t0) but does not know the values of R1/4(t1), R1/4(t2), R1/4(t3)
and thus cannot anticipate whether it is more convenient to borrow at variable or constant
interest rate. Investors may use financial instruments such as interest rate swaps or
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interest rate caps/floors to hedge against the risk derived from the fluctuations of interest
rates in the market.

Letting h → 0 in (13) we obtain the continuously compounded interest rate (or short
rate) r(t) of the money market asset, namely

Rh(s)→ r(s) =
B′(s)

B(s)
=

d

ds
logB(s), as h→ 0. (15)

Thus r(t) is the interest rate to borrow at time t for an “infinitesimal” interval of time, which
in the real world corresponds to overnight loans. Integrating (15) on [t, t+ h] we find

B(t+ h) = B(t)e
∫ t+h
t r(s) ds, (16)

which is the continuum analog of (12). Integrating (15) in the time interval [0, t] we obtain
the continuum analog of (14), namely

B(t) = B(0) exp

(∫ t

0

r(s) ds

)
. (17)

Frictionless markets

Market models in financial mathematics are based on a number of simplifying assumptions
which deviate, sometimes substantially, from the behavior of real markets. Among these
simplifying assumptions we impose that

1. There is no bid/ask spread

2. There are no transaction costs and trades occur instantaneously

3. An investor can trade any fraction of shares

4. When a stock pays a dividend, the ex-dividend date and the payment date are the
same and the stock price at this date drops by the exact same amount paid by the
dividend

As seen in the previous sections real markets do not satisfy exactly these assumptions,
although in some case they do it with reasonable approximation. For instance, if the investor
is a professional agent managing large portfolios then the above assumptions reflect reality
quite well. However they work very badly for private investors and for small portfolios. The
validity of these assumptions is summarized by saying that the market has no friction.
The idea is that, when the above assumptions hold, trading proceeds “smoothly without
resistance”.

In a frictionless market the portfolio process of an agent who is investing on N assets during
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the time interval [0, T ] may be defined as a function

A : [0, T ]→ RN , A(t) = (a1(t), . . . , aN(t)),

i.e., by assumptions 2 and 3, the number of shares ai(t) of each single asset at time t is
now allowed to be any real number and to change at any arbitrary time in the interval
[0, T ]; of course, in real market applications a1(t), . . . , aN(t) must be rounded to integer
numbers. Portfolio processes can be added using the linear structure in RN , namely if
B = (b1(t), . . . , bN(t)), and α, β ∈ R, then αA+ βB is the portfolio process

αA+ βB = (αa1(t) + βb1(t), . . . , αaN(t) + βbN(t)).

The value at time t of the portfolio process A is

VA(t) =
N∑
i=1

ai(t)Π
Ui(t),

and clearly
VαA(t) + VβB(t) = VαA+βB(t).

Moreover, thanks to assumption 3, perfect self-financing portfolio processes in frictionless
markets always exist.

By assumption 1, any offer to buy/sell an asset is matched by an offer to sell/buy the asset.
Of course this assumption is only reasonable when the price of the asset is fair. What exactly
means that asset prices are fair will be the one of the main topics of study in options pricing
theory.

0.2 Finite probability theory

We begin by recalling a few results on finite probability spaces. For more details on this
subject, see Chapter 5 in [2].

Let Ω = {ω1, . . . , ωm} be a sample space containing m elements. Let p = (p1, . . . , pm) be a
probability vector, i.e.,

0 < pi < 1, for all i = 1, . . . ,m, and
m∑
i=1

pi = 1.

We define pi = P({ωi}) to be the probability of the event {ωi}. If A ⊆ Ω is a non-empty
event, we define the probability of A as

P(A) =
∑
i:ωi∈A

pi =
∑
ω∈A

P({ω}).
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Moreover P(∅) = 0. The pair (Ω,P) is called a finite probability space. For example,
given p ∈ (0, 1), the probability space

ΩN = {H,T}N , Pp({ω}) = pNH(ω)(1− p)NT (ω)

is called the N-coin toss probability space. Here NH(ω) is the number of Heads in the
toss ω ∈ ΩN and NT (ω) = N − NH(ω) is the number of Tails. In this probability space,
tosses are independent and each toss has the same probability p to result in a head.

A random variable is a function X : Ω → R. Y is said to be X-measurable if there
exists a function g such that Y = g(X). Two random variables X, Y are independent
if P(X ∈ I, Y ∈ J) = P(X ∈ I)P(Y ∈ J) for every I ⊆ Im(X) and J ⊆ Im(Y ), where
Im(X) = {y ∈ R : y = X(ω) for some ω ∈ Ω} is the image of X.

The function
fX(x) = P(X = x),

is called the probability density function (or probability mass function) of X. Clearly
fX(x) = 0 if x /∈ Im(X). The expectation of X is denoted by E[X]; it is given by

E[X] =
∑
ω∈Ω

X(ω)P({ω})

and satisfies the properties in the following theorem.

Theorem 0.1. Let X, Y be random variables, g : R→ R, α, β ∈ R. The following holds:

1. E[αX + βY ] = αE[X] + βE[Y ] (linearity).

2. If X ≥ 0 and E[X] = 0, then X = 0.

3. If X ≥ Y , then E[X] ≥ E[Y ] (monotonicity).

4. If X, Y are independent then E[XY ] = E[X]E[Y ].

5. If Y = g(X), i.e., if Y is X-measurable, then

E[g(X)] =
∑

x∈Im(X)

g(x)fX(x). (18)

6. For any convex continuous function f : R→ R, the Jensen inequality holds:

f(E[X]) ≤ E[f(X)].

For instance in the N -coin toss probability space consider a random variable X which is
measurable with respect to NH , i.e., X(ω) = g(NH(ω)). Then

E[X] =
∑
ω∈ΩN

X(ω)P({ω}) =
∑
ω∈ΩN

g(NH(ω))pNH(ω)(1− p)NT (ω)

=
N∑
k=0

(
N

k

)
g(k)pk(1− p)N−k, (19)
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where we used that the number of N -tosses with NH(ω) = k is given by the binomial
coefficient

(
N
k

)
, for all k = 0, . . . , N .

The quantity
Var[X] = E[(X − E[X])2] = E[X2]− E[X]2

is called variance of the random variable X. The quantity

Cov[X, Y ] = E[(X − E[X])(Y − E[Y ]) = E[XY ]− E[X]E[Y ]

is called covariance of the random variables X, Y . We have the identities

Var[X] = Cov[X,X], Var[X + Y ] = Var[X] + Var[Y ] + 2Cov[X, Y ].

If Var[X],Var[Y ] are both positive (i.e., if X, Y are not deterministic constants), the quantity

Corr[X, Y ] =
Cov[X,Y]√

Var[X]Var[Y ]
∈ [−1, 1]

is called correlation of X, Y . If Corr[X, Y ] = 0, the random variables X, Y are said to be
uncorrelated. It follows by Theorem 0.1(4) that X, Y independent ⇒ X, Y uncorrelated
(while the opposite is in general not true).

The conditional expectation of X given Y is denoted by E[X|Y ]:

E[X|Y ](ω) =
∑

x∈Im(X)

P(X = x|Y = Y (ω))x,

where P(A|B) = P(B)−1P(A ∩ B) is the conditional probability of the event A given the
event B. The conditional expectation is a Y -measurable random variable and satisfies the
following properties.

Theorem 0.2. Let X, Y, Z : Ω→ R be random variables and α, β ∈ R. Then

1. E[αX + βY |Z] = αE[X|Z] + βE[Y |Z] (linearity).

2. If X is independent of Y , then E[X|Y ] = E[X].

3. If X is Y -measurable, then E[X|Y ] = X.

4. E[E[X|Y ]] = E[X].

5. If X is Z-measurable, then E[XY |Z] = XE[Y |Z].

6. If Z is Y -measurable then E[E[X|Y ]|Z] = E[X|Z].

These properties remain true if the conditional expectation is taken with respect to several
random variables.
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A discrete stochastic process is a (possibly finite) sequence {X0, X1, X2, . . . } = {Xn}n∈N
of random variables. We refer to the index n in Xn as time step. If the discrete stochastic
process is finite, i.e., if it runs only for a finite number N ≥ 1 of time steps, we shall denote
it by {Xn}n=0,...,N and call it a N-period process. At each time step, a discrete stochastic
process on a finite probability space is a random variable with finitely many possible values.
More precisely, for all n = 0, 1, 2, . . . , the value xn of Xn satisfies xn ∈ Im(Xn). We call xn
an admissible state of the stochastic process. Note that xn is an admissible state if and
only if P(Xn = xn) > 0.

A stochastic process {Yn}n∈N is said to be measurable with respect to {Xn}n∈N if for
all n ∈ N there exists a function gn : Rn+1 → R such that Yn = gn(X0, X2, . . . , Xn). If
Yn = hn(X0, . . . , Xn−1) for some function hn : Rn → R, n ≥ 1, then {Yn}n∈N is said to be
predictable from the process {Xn}n∈N.

A discrete stochastic process {Xn}n∈N on the finite probability space (Ω,P) is called a mar-
tingale if

E[Xn+1|X1, X2, . . . Xn] = Xn, for all n ∈ N. (20)

The interpretation is the following: The variables X0, X1, . . . Xn contain the information
obtained by “looking” at the stochastic process up to the time step n. For a martingale
process, this information is not enough to estimate whether, in the next step, the process
will raise or fall. Martingales have constant expectation, i.e., E[Xn] = E[X0], for all n ∈ N.

A discrete stochastic process {Xn}n∈N on the finite probability space (Ω,P) is called a
Markov chain if it satisfies the Markov property:

P(Xn+1 = xn+1|Xn = xn) = P(Xn+1 = xn+1|X1 = x1, X2 = x2, . . . , Xn = xn), (21)

for all n ∈ N and for all admissible states x0 ∈ Im(X0), . . . , xn+1 ∈ Im(Xn+1) such that
P(X0 = x0, X1 = x1, . . . Xn = xn) is positive2. The interpretation is the following: If
{Xn}n∈N is a Markov process, then the probability of transition from the state xn to the
state xn+1 does not depend on the states occupied by the process before time n. Thus
Markov processes are “memoryless”: at each time step they “forget” what they did earlier.

The left hand side of (21) is called the transition probability from the state xn to the state
xn+1 and is denoted also as P(xn → xn+1). If P(xn → xn+1) is independent of n = 1, 2, . . . ,
the Markov process is said to be time homogeneous.

Remark 0.3. If {Xn}n∈N is a Markov process and {Yn}n∈N is measurable with respect to
{Xn}n∈N, then the Markov property (21) implies

E[Yn|Xn−1] = E[Yn|X0, . . . , Xn−1].

Remark 0.4. The Markov property and the martingale property depend on the probability
measure, i.e., a stochastic process can be a martingale and/or a Markov process in one

probability P and neither of them in another probability P̃.

2That is to say, there must be a path of the stochastic process that connects the states x0, . . . , xn.
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Example: Random Walk. Consider the following stochastic process {Xn}n=1,...,N defined
on the N -coin toss probability space (ΩN ,Pp):

ω = (γ1, . . . , γN) ∈ ΩN , Xn(ω) =

{
1 if γn = H
−1 if γn = T

.

The random variables X1, . . . , XN are independent and identically distributed (i.i.d), namely

Pp(Xn = 1) = p, Pp(Xn = −1) = 1− p, for all n = 1, . . . , N.

Hence

E[Xn] = 2p− 1, Var[Xn] = 4p(1− p), for all n = 1, . . . , N .

Now, for n = 1, . . . , N , let

M0 = 0, Mn =
n∑
i=1

Xi.

The stochastic process {Mn}n=0,...,N is measurable (but not predictable) with respect to the
process {Xn}n=1,...,N and is called (N-period) random walk. It satisfies

E[Mn] = n(2p− 1), for all n = 0, . . . , N.

Moreover, since it is the sum of independent random variables, the random walk has variance
given by

Var[M0] = 0, Var[Mn] = Var(X1 +X2 + · · ·+Xn) =
n∑
i=1

Var[Xi] = 4np(1− p).

When p = 1/2, the random walk is said to be symmetric. In this case {Mn}n=0,...,N

satisfies E[Mn] = 0 and Var[Mn] = n, n = 0, . . . , N . When p 6= 1/2, {Mn}n=0,...,N is called
an asymmetric random walk, or a random walk with drift.

If Mn = k then Mn+1 is either k + 1 (with probability p), or k − 1 (with probability 1− p).
Hence we can represent the paths of the random walk by using a binomial tree, as in the
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following example for N = 3:

M3 = 3

M2 = 2

p
77

1−p

''
M1 = 1

p
77

1−p

''

M3 = 1

M0 = 0

p
77

1−p

''

M2 = 0

p
77

1−p

''
M1 = −1

p
77

1−p

''

M3 = −1

M2 = −2

p
77

1−p

''
M3 = −3

By inspection we see that the admissible states of the symmetric random walk at the step n
are given by

Im(Mn) = {−n,−n+ 2,−n+ 4, . . . , n− 2, n} = {2k − n, k = 0, . . . , n},

where k is the number of times that the random walk “goes up” up to the step n included.
From this one can see that the density of Mn is given by the binomial probability density
function

fMn(x) =

(
n

k

)
pk(1− p)n−kδ(x− (2k − n)), k = 0, . . . , n, (22)

where δ(z) = 1 if z = 0 and δ(z) = 0 otherwise.

Let m0 = 0, m1 ∈ {−1, 1} = Im(M1), . . . , mN ∈ {−N,−N + 2, . . . , N − 2, N} = Im(MN)
be the admissible states at each time step. From the binomial tree of the process it is clear
that there exists a path connecting m0,m1, . . . ,mN if and only if mn = mn−1 ± 1, for all
n = 1, . . . , N , and we have

P(Mn = mn|M1 = m1, . . . ,Mn−1 = mn−1) = P(Mn = mn|Mn−1 = mn−1)

=

{
p if mn = mn−1 + 1
1− p if mn = mn−1 − 1

.

Hence the random walk is an example of time homogeneous Markov chain.

Next we show that the symmetric random walk is a martingale. In fact, using the linearity
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of the conditional expectation we have

E[Mn|M1, . . . ,Mn−1] = E[Mn−1 +Xn|M1, . . . ,Mn−1]

= E[Mn−1|M1, . . . ,Mn−1] + E[Xn|M1, . . . ,Mn−1].

As Mn−1 is measurable with respect to M1, . . . ,Mn−1, then E[Mn−1|M1, . . . ,Mn−1] = Mn−1,
see Theorem 0.2(3). Moreover, as Xn is independent of M1, . . . ,Mn−1, Theorem 0.2(2) gives
E[Xn|M1, . . . ,Mn−1] = E[Xn] = 0. It follows that E[Mn|M1, . . . ,Mn−1] = Mn−1, i.e., the
symmetric random walk is a martingale. However the asymmetric random walk (p 6= 1/2)
is not a martingale, as it follows by the fact that its expectation E[Mn] = n(2p − 1) is not
constant.

Generalized random walk. A random walk may be defined as any discrete stochastic
process {Mn}n∈N which satisfies the following properties:

� Im(Mn) = {−n,−n+ 2,−n+ 4, . . . , n− 2, n}, for all n = 0, 1, . . . ;

� {Mn}n∈N is a time-homogeneous Markov chain;

� There exists p ∈ (0, 1) such that for (mn−1,mn) ∈ Im(Mn−1)× Im(Mn), the transition
probability P(mn−1 → mn) is given by

P(mn−1 → mn) =


p if mn = mn−1 + 1
1− p if mn = mn−1 − 1
0 otherwise

.

We may generalize this definition by relaxing the second and third properties as follows.

Definition 0.1. A discrete stochastic process {Mn}n∈N on a finite probability space is called
a generalized random walk if it satisfies the following properties:

1. Im(Mn) = {−n,−n+ 2,−n+ 4, . . . , n− 2, n}, for all n = 0, 1, . . . ;

2. {Mn}n∈N is a Markov chain;

3. For all n = 1, 2, . . . there exist pn : Im(Mn−1)→ (0, 1) such that

P(mn−1 → mn) =


pn(mn−1) if mn = mn−1 + 1
1− pn(mn−1) if mn = mn−1 − 1
0 otherwise

.
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The binomial tree of a generalized random walk will be written as in the following example:

M3 = 3

M2 = 2

p3(2)
77

1−p3(2)

''
M1 = 1

p2(1)
77

1−p2(1)

''

M3 = 1

M0 = 0

p1(0)
77

1−p1(0)

''

M2 = 0

p3(0)
77

1−p3(0)

''
M1 = −1

p2(−1)
77

1−p2(−1)

''

M3 = −1

M2 = −2

p3(−2)
77

1−p3(−2)

''
M3 = −3

When pn ≡ p for all n = 1, 2, . . . , the generalized random walk becomes the standard
random walk considered before. Note carefully that the admissible states of a generalized
random walk are precisely the same as for the standard random walk, but they are now
attained with different probabilities. In particular the generalized random walk is no longer
binomially distributed, unless of course pn ≡ p for all n = 1, 2, . . . .

For later purpose we give below a formula to compute the probability that the generalized
random walk follows a given path. It is clear that any path in the N -period random walk
is uniquely identified by a vector x ∈ {−1, 1}N , i.e., a N -dimensional vector where each
component is either −1 or 1. More precisely, the path of the random walk corresponding to
x ∈ {−1, 1}N it the unique path satisfying M0 = 0 and Mi = Mi−1 + xi, i = 1, . . . , N .

Theorem 0.3. Let x ∈ {−1, 1}N and set x0 = 0. The probability P(x) that the generalized
random walk follows the path x is given by

P(x) =
N∏
t=1

[
−min(xt, 0) + xtpt

(
t−1∑
j=0

xj

)]
. (23)

The previous theorem can be easily proved by induction, but here we limit ourselves to
consider one example of application of (23). In the 3-period model consider the path x =
(−1,−1, 1). Then according to the previous theorem

P((−1,−1, 1)) = (−min(−1, 0) + (−1)p1(0))(−min(−1, 0) + (−1)p2(0− 1))

× (−min(1, 0) + (1)p3(0− 1− 1)) = (1− p1(0))(1− p2(−1))p3(−2).
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That this formula is correct is easily seen in the binomial tree above.

The generalized random walk will be used in Section 0.4 to introduce a generalized binomial
model in which the risk-free asset is a stochastic process. The standard binomial model, in
which the risk-free rate is assumed to be constant, is reviewed in the next section.

0.3 The binomial model with constant risk-free rate

Given 0 < p < 1, S0 > 0 and u > d, the binomial stock price at time t is given by
S(0) = S0 and

S(t) =

{
S(t− 1)eu with probability p
S(t− 1)ed with probability 1− p , for t = 1, . . . , N. (24)

If S(t) = S(t− 1)eu we say that the stock price goes up at time t, while if S(t) = S(t− 1)ed

we say that it goes down at time t (although this terminology is strictly correct only when
u > 0 and d < 0). For instance, for N = 3 the binomial stock can be represented as in the
following recombining binomial tree:

S(3) = S0e
3u

S(2) = S0e
2u

p
66

1−p

((
S(1) = S0e

u

p
66

1−p

((

S(3) = S0e
2u+d

S(0) = S0

p
66

1−p

((

S(2) = S0e
u+d

p
66

1−p

((
S(1) = S0e

d

p
66

1−p

((

S(3) = S0e
u+2d

S(2) = S0e
2d

p
66

1−p

((
S(3) = S0e

3d

The possible stock prices at time t belong to the set

Im(S(t)) = {S0e
ku+(t−k)d, k(t) = 0, . . . , t},
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where k is the number of times that the price goes up up to and including time t. It follows
that there are t+ 1 possible prices at time t and so the number of nodes in the binomial tree
grows linearly in time. Moreover the stock price is binomially distributed, namely

fS(t)(x) =

(
t

k

)
pk(1− p)t−kδ(x− S0e

ku+(t−k)d), k = 0, . . . , t. (25)

The binomial stock price can be interpreted as a stochastic process defined on the N -coin
toss probability space (ΩN ,Pp). To see this, consider the following i.i.d. random variables

Xt : ΩN → R, Xt(ω) =

{
1, if the tth toss in ω is H
−1, if the tth toss in ω is T

, t = 1, . . . , N.

We can rewrite (24) as S(t) = S(t − 1) exp[(u + d)/2 + (u − d)Xt/2], which upon iteration
leads to

S(t) = S0 exp

[
t

(
u+ d

2

)
+

(
u− d

2

)
Mt

]
, Mt = X1 + · · ·+Xt, t = 1, . . . , N. (26)

Hence S(t) : ΩN → R and therefore {S(t)}t=0,...,N is a N -period stochastic process on the N -
coin toss probability space (ΩN ,Pp). In this context, Pp is called physical (or real-world)
probability measure, to distinguish it from the martingale (or risk-neutral) probability
introduced below. Letting M0 = 0, we have that {Mt}t=0,...,N is a random walk (which is
asymmetric for p 6= 1/2). It follows that {S(t)}t=0,...,N is measurable, but not predictable,
with respect to {Mt}t=0,...,N . For each ω ∈ ΩN , the vector (S(0), S(1, ω), . . . , S(N,ω)) is
called a path of the binomial stock price.

A binomial market is a market that consists of one stock with price given by (26), and a
risk-free asset with value B(t) at time t = 1, . . . , N . In the standard binomial model it is
assumed that B(t) is a deterministic function of time with constant interest rate, namely

r = logB(t+ 1)− logB(t), or R =
B(t+ 1)−B(t)

B(t)
.

It follows that the value of the risk-free asset at time t can be written in either of the two
forms

B(t) = B0e
rt, or B(t) = B0(1 +R)t, t = 1, . . . , N,

where B0 is the initial value of the risk-free asset. We shall refer to R as the discretely
compounded risk-free rate and to r as the continuously compounded risk-free rate
(although the latter terminology is only strictly correct in the time continuum limit, i.e.,
when we let the length of the time step tends to zero). Note also that

r = log(1 +R). (27)

As r and R are small, then r ≈ R.
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Remark 0.5. In [2] only the continuously compounded risk-free rate r was used. Here we
introduced the discretely compounded risk-free rate R as well because it will be used in
Section 0.4 to formulate a generalized binomial model with stochastic risk-free rate.

The quantity

S∗(t) = e−rtS(t), or equivalently S∗(t) =
S(t)

(1 +R)t
,

is called the discounted price of the stock (at time t = 0).

In the following we denote by Ep the (possibly conditional) expectation in the probability
space (ΩN ,Pp).

Theorem 0.4. If r /∈ (d, u), there is no probability measure Pp on the sample space ΩN

such that the discounted stock price process {S∗(t)}t=0,...,N is a martingale. For r ∈ (d, u),
{S∗(t)}t=0,...,N is a martingale with respect to the probability measure Pp if and only if p = q,
where

q =
er − ed

eu − ed
.

Proof. By definition, {S∗(t)}t=0,...,N is a martingale if and only if

Ep[S∗(t)|S∗(0), . . . , S∗(t− 1)] = S∗(t− 1), for all t = 1, . . . , N.

Taking the expectation conditional to S∗(0), . . . , S∗(t− 1) is clearly the same as taking the
expectation conditional to S(0), . . . , S(t− 1), hence the above equation is equivalent to

Ep[S(t)|S(0), . . . , S(t− 1)] = erS(t− 1), for all t = 1, . . . , N, (28)

where we canceled out a factor e−rt in both sides of the equation. Moreover

Ep[S(t)|S(0), . . . , S(t− 1)] = Ep[
S(t)

S(t− 1)
S(t− 1)|S(0), . . . , S(t− 1)]

= S(t− 1)Ep[
S(t)

S(t− 1)
|S(0), . . . , S(t− 1)],

where we used that S(t − 1) is measurable with respect to the conditioning variables and
thus it can be taken out from the conditional expectation (see property 5 in Theorem 0.2).
As

S(t)/S(t− 1) =

{
eu with prob. p
ed with prob. 1− p

is independent of S(0), . . . , S(t− 1), then by Theorem 0.2(2) we have

Ep[
S(t)

S(t− 1)
|S(0), . . . , S(t− 1)] = Ep[

S(t)

S(t− 1)
] = eup+ ed(1− p).

Hence (28) holds if and only if eup+ ed(1− p) = er. Solving in p ∈ (0, 1) we find p = q and
the condition 0 < q < 1 is then equivalent to r ∈ (d, u).
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Due to Theorem 0.4, Pq is called martingale probability measure. Moreover, since
martingales have constant expectation, then

Eq[S(t)] = S0e
rt. (29)

Thus in the martingale probability measure one expects the same return on the stock as on
the risk-free asset. For this reason, Pq is also called risk-neutral probability.

Self-financing portfolios

A portfolio process in a binomial market is a stochastic process {(hS(t), hB(t))}t=0,...,N

such that, for t = 1, . . . , N , (hS(t), hB(t)) corresponds to the portfolio position (number of
shares) on the stock and the risk-free asset held in the interval (t− 1, t]. A positive number
of shares corresponds to a long position on the asset, while a negative number of shares
corresponds to a short position. As portfolio positions held for one instant of time only are
meaningless, we use the convention hS(0) = hS(1), hB(0) = hB(1), that is to say, hS(1), hB(1)
is the portfolio position in the closed interval [0, 1]. We always assume that the portfolio
process is predictable from {S(t)}t=0,...,N , i.e., there exists functions Ht : (0,∞)t → R2 such
that (hS(t), hB(t)) = Ht(S(0), . . . , S(t−1)). Thus the decision on which position the investor
should take in the interval (t− 1, t] depends only on the information available at time t− 1.
The value of the portfolio process is the stochastic process {V (t)}t=0,...,N given by

V (t) = hB(t)B(t) + hS(t)S(t), t = 0, . . . , N. (30)

A portfolio process {(hS(t), hB(t))}t=0,...,N is said to be self-financing if

V (t− 1) = hB(t)B(t− 1) + hS(t)S(t− 1), t = 1, . . . , N, (31)

while it is said to generate the cash flow C(t− 1) if

V (t− 1) = hB(t)B(t− 1) + hS(t)S(t− 1) + C(t− 1), t = 1, . . . , N. (32)

Recall that C(t) > 0 corresponds to cash withdrawn from the portfolio at time t while
C(t) < 0 corresponds to cash added to the portfolio at time t. The self-financing property
means that no cash is ever added or withdrawn from the portfolio.

Theorem 0.5. Let {(hS(t), hB(t))}t=0,...,N be a self-financing predictable portfolio process
with value {V (t)}t=0,...,N . Then the discounted portfolio value {V ∗(t)}t=0,...,N is a martingale
in the risk-neutral probability measure. Moreover the following identity holds:

V ∗(t) = Eq[V ∗(N)|S(0), . . . , S(t)], t = 0, . . . , N. (33)

Proof. The martingale claim is

Eq[V ∗(t)|V ∗(0), . . . , V ∗(t− 1)] = V ∗(t− 1).
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We now show that this follows by

Eq[V ∗(t)|S(0), . . . , S(t− 1)] = V ∗(t− 1). (34)

In fact, computing the expectation of (34) conditional to V ∗(0), . . . , V ∗(t− 1), we obtain

V ∗(t− 1) = Eq[V ∗(t− 1)|V ∗(0), . . . , V ∗(t− 1)]

= Eq
[
Eq[V ∗(t)|S(0), . . . , S(t− 1)]|V ∗(0), . . . , V ∗(t− 1)

]
= Eq[V ∗(t)|V ∗(0), . . . , V ∗(t− 1)],

where we have used property 3 of Theorem 0.2 in the first equality and property 6 in the last
equality. The latter is possible because V ∗(t) is measurable with respect to S(0), . . . , S(t).
Now we claim that (34) also implies the formula (33). We argue by backward induction.
Letting t = N in (34) we see that (33) holds at t = N − 1. Assume now that (33) holds at
time t+ 1, i.e.,

V ∗(t+ 1) = Eq[V ∗(N)|S(0), . . . , S(t+ 1)].

Taking the expectation conditional to S(0), . . . , S(t) we have, by (34),

V ∗(t) = Eq[V ∗(t+ 1)|S(0), . . . , S(t)] = Eq
[
Eq[V ∗(N)|S(0), . . . , S(t+ 1)]|S(0), . . . , S(t)

]
= Eq[V ∗(N)|S(0), . . . , S(t)].

Hence (33) holds at time t and so (34) ⇒ (33), as claimed. Finally we prove (34). As
B(t) = B(t− 1)er, (31) gives

hB(t)B(t) = erV (t− 1)− hS(t)S(t− 1)er.

Replacing in (30) we find

V (t) = erV (t− 1) + hS(t)[S(t)− S(t− 1)er].

Taking the expectation conditional to S(0), . . . , S(t− 1) we obtain

Eq[V (t)|S(0), . . . S(t− 1)] = erEq[V (t− 1)|S(0), . . . , S(t− 1)]

+ Eq[hS(t)(S(t)− S(t− 1)er)|S(0), . . . , S(t− 1)]. (35)

As V (t − 1) and hS(t) are measurable with respect to the conditioning variables we have
Eq[V (t− 1)|S(0), . . . , S(t− 1)] = V (t− 1), as well as

Eq[hS(t)(S(t)− S(t− 1)er)|S(0), . . . , S(t− 1)]

= hS(t)Eq[S(t)− S(t− 1)er|S(0), . . . , S(t− 1)]

= hS(t)
(
Eq[S(t)|S(0), . . . , S(t− 1)]− S(t− 1)er

)
= 0,

where in the last step we used that {S∗(t)}t=0,...,N is a martingale in the risk-neutral proba-
bility. Going back to (35) we obtain

Eq[V (t)|S(0), . . . S(t− 1)] = erV (t− 1),

which is the same as (34).
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Arbitrage portfolios

A portfolio process {(hS(t), hB(t)}t=0,...,N invested in the binomial market is called an arbi-
trage portfolio process if it is predictable and if its value V (t) satisfies

1) V (0) = 0;

2) V (N,ω) ≥ 0, for all ω ∈ ΩN ;

3) There exists ω∗ ∈ ΩN such that V (N,ω∗) > 0.

Theorem 0.6. Assume d < r < u, i.e., assume the existence of a risk-neutral probabil-
ity measure for the binomial market. Then the binomial market is free of self-financing
arbitrages.

Proof. Assume that {hS(t), hB(t)}t=0,...,N is a self-financing arbitrage portfolio process. Then
V (0) = V ∗(0) = 0 and since martingales have constant expectation then Eq[V ∗(t)] = 0, for
all t = 0, 1, . . . , N . As V (N) ≥ 0, then V ∗(N) ≥ 0 and Theorem 0.1(2) entails V ∗(N,ω) = 0
for any sample ω ∈ ΩN . Hence V (N,ω) = 0, for all ω ∈ ΩN , contradicting the assumption
that the portfolio is an arbitrage.

Remark 0.6. As shown in [2], the existence of a risk-neutral probability measure in not
only sufficient but also necessary for the absence of self-financing arbitrages in the binomial
market. More precisely, if r /∈ (d, u) one can construct self-financing arbitrage portfolios
in the market. Hence the binomial market is free of self-financing arbitrages if and only if
it admits a risk-neutral probability measure. The latter result is valid for any discrete (or
even continuum) market model and is known as the first fundamental theorem of asset
pricing.

Risk neutral pricing formula for European derivatives in the bino-
mial model

Let Y : ΩN → R be a random variable and consider the European-style derivative with
pay-off Y at maturity time T = N . This means that the derivative can only be exercised
at time t = N . For standard European derivatives Y is a deterministic function of S(N),
while for non-standard derivatives Y is a deterministic function of S(0), . . . , S(N). Let ΠY (t)
be the binomial fair price of the derivative a time t. By definition, ΠY (t) equals the value
V (t) of self-financing, hedging portfolios. In particular, ΠY (t) is a random variable and so
{ΠY (t)}t=0,...,N is a stochastic process. Using the hedging condition V (N) = Y (which means
V (N,ω) = Y (ω), for all ω ∈ ΩN)) and (33), we have the following formula for the fair price
at time t of the financial derivative:

ΠY (t) = e−r(N−t)Eq[Y |S(0), . . . , S(t)]. (36)
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Equation (36) is known as risk-neutral pricing formula and it is the cornerstone of
options pricing theory. It holds not only for the binomial model but for any discrete—or
even continuum —pricing model for financial derivatives. It is used for standard as well as
non-standard European derivatives. In the special case t = 0, (36) reduces to

ΠY (0) = e−rNEq[Y ]. (37)

Remark 0.7. We may interpret (37) as follows: the current (at time t = 0) fair value of the
derivative is our expectation on the future payment of the derivative (the pay-off) expressed
in terms of the future value of money (discounted pay-off Y ∗ = e−rNY ). The expectation has
to be taken with respect to the martingale probability measure, i.e., ignoring any (subjective
or illegal3) estimate on future movements of the stock price (except for the loss in value due
to the time-devaluation of money).

Example. Consider a 2-period binomial model with the following parameters

eu =
4

3
, ed =

2

3
, r = 0, p ∈ (0, 1).

Assume further that S0 = 36. Consider the European derivative with pay-off

Y = (S(2)− 28)+ − 2(S(2)− 32)+ + (S(2)− 36)+

and time of maturity T = 2. According to (37), the fair value of the derivative at t = 0 is

ΠY (0) = e−2rEq[Y ] = Eq[(S(2)− 28)+]− 2Eq[(S(2)− 32)+] + Eq[(S(2)− 36)+].

By the market parameters we find q = 1/2. Hence the distribution of S(2) in the risk-neutral
probability measure is

Pq(S(2) = s) =


1/4 if s = 16 of s = 64
1/2 if s = 32
0 otherwise

.

It follows that

Eq[(S(2)− 28)+] = 11, Eq[(S(2)− 32)+] = 8, Eq[(S(2)− 36)+] = 7,

hence ΠY (0) = 2.

By definition of expectation in the N -coin toss probability space, see (19), the risk-neutral
pricing formula (37) for the standard European derivative with pay-off Y = g(S(N)) and
maturity T = N takes the explicit form

ΠY (0) = e−rN
N∑
k=0

(
N

k

)
qk(1− q)kg(S0e

ku+(N−k)d).

3Trading in the market using privileged information is a crime (insider trading).
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However this formula is not very convenient for numerical computations, because the bino-
mial coefficient

(
N
k

)
will reach very large values for even a relative small number of steps (e.g.,(

50
25

)
is of order 1014). A much more convenient way to compute numerically the binomial

price of standard European derivatives is by using the recurrence formula ΠY (N) = Y and

ΠY (t) = e−r(qΠu
Y (t+ 1) + (1− q)Πd

Y (t+ 1)), t = 0, . . . , N − 1, (38)

where Πu
Y (t) is the binomial price of the derivative at time t assuming that the stock price

goes up at time t, i.e.,

Πu
Y (t) = e−r(N−t)Eq[Y |S(0), . . . , S(t− 1), S(t) = S(t− 1)eu]

and similarly one defines Πd
Y (t) by replacing “up” with “down”. The formula (38) follows

immediately by (36) and the definition of conditional expectation.

Remark 0.8. It can be shown that any European derivative in the binomial market can
be hedged by a self-financing portfolio invested in the underlying stock and the risk-free
asset, see [2]. For this reason the binomial market is called a complete market. In fact,
the second fundamental theorem of asset pricing states that market completeness
is equivalent to the uniqueness of the risk-neutral probability measure. An arbitrage free
market is said to be incomplete if the risk-neutral measure is not unique. When the market
is incomplete the price of European derivatives is not uniquely defined and moreover there
exist European derivatives which cannot be hedged by self-financing portfolios. An example
of incomplete market is the trinomial model discussed in the project in Chapter 1.

Implementation of the binomial model

For real world applications the binomial model must be properly rescaled in time. Precisely,
let T > 0 be the maturity of a European derivative and consider the uniform partition of
the interval [0, T ] with size h > 0:

0 = t0 < t1 < · · · < tN = T, ti − ti−1 = h, for all i = 1, . . . , N.

The binomial stock price on the given partition is given by S(0) = S0 > 0 and

S(ti) =

{
S(ti−1)eu, with probability p,
S(ti−1)ed, with probability 1− p, i = 1, . . . , N,

while
B(ti) = B0e

rhi.

The instantaneous mean of log-return and the instantaneous variance of the binomial
stock price are defined respectively by

α =
1

h
Ep[logS(ti)− logS(ti−1)] =

1

h
[pu+ (1− p)d],

σ2 =
1

h
Varp[logS(ti)− logS(ti−1)] =

(u− d)2

h
p(1− p),
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while σ itself is called instantaneous volatility. The parameters α, σ are constant in
the standard binomial model and are computed using the physical probability (and not the
risk-neutral probability). Inverting the equations above we obtain

u = αh+ σ

√
1− p
p

√
h, d = αh− σ

√
p

1− p
√
h. (39)

In the applications of the binomial model it is customary to give the parameters α, σ and
then compute u, d using (39). The risk-neutral probability then becomes

q =
erh − eαh−σ

√
p

1−p
√
h

e
αh+σ

√
1−p
p

√
h − eαh−σ

√
p

1−p
√
h
. (40)

The binomial model is trustworthy only for h very small compared to T (i.e., N >> 1).

The Matlab Code 1 defines a function EuroZeroBin(g, T, s, alpha, sigma, r, p, N) that com-
putes the initial price of the standard European derivative with pay-off Y = g(S(T )) us-
ing (38). The variable s is the initial price S0 of the stock. The function also checks that
q ∈ (0, 1), i.e., that the risk-neutral probability is well defined (and thus the market is free
of self-financing arbitrages). If not a message appears which asks to increase the number of
steps N .

For instance, upon running the command

Pzero = EuroZeroBin(@(x) max(x− 11, 0), 1/3, 10, 0, 0.5, 0.01, 1/2, 10000)

we get the output
Pzero = 0.7813,

which is the (binomial) price at time t = 0 of a European call with strike K = 11 and
maturity T = 1/3 years (4 months) on a stock which at t = 0 is priced 10 and which has
volatility σ = 0.5 (i.e., 50%) and zero mean of log-return (α = 0). The (annual) risk free
rate is r = 0.01 (i.e., 1%). Moreover p = 1/2 and N = 10000. Prices are expressed in an
arbitrary unit of currency (e.g., dollars) and the final result has been truncated at the fourth
decimal digit.

As shown in [2], the binomial price of the derivative is very weakly dependent on the pa-
rameter α ∈ R and p ∈ (0, 1) (provided N is sufficiently large, say N ≈ 10000). Hence one
normally chooses α = 0 and p = 1/2 in the implementation of the binomial model.

0.4 A binomial model with stochastic risk-free rate

In this section we present a generalization of the binomial model in which the risk-free rate
is promoted to a stochastic process. Considering markets with random interest rates is
important for the valuation of long maturity contracts. The binomial model with stochastic
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function Pzero=EuroZeroBin(g,T,s,alpha,sigma,r,p,N)

h=T/N;

u=alpha*h+sigma*sqrt(h)*sqrt((1-p)/p);

d=alpha*h-sigma*sqrt(h)*sqrt(p/(1-p));

qu=(exp(r*h)-exp(d))/(exp(u)-exp(d));

qd=1-qu;

if (qu<0 || qd<0)

display(’Error: the market is not arbitrage free. Increase the

value of N’);

Pzero=0;

return

end

S=zeros(N+1,1);

P=zeros(N+1);

S=s*exp((N-[0:N])*u+[0:N]*d).’;

P(:,N+1)=g(S);

for j=N:-1:1

for i=1:j

P(i,j)=exp(-r*h)*(qu*P(i,j+1)+qd*P(i+1,j+1));

end

end

Code 1: Matlab function to compute the binomial price of European options at time t = 0.
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interest rate presented in this section will be used in the project in Chapter 2 on forward
and futures contracts.

Let {Mt}t=0,...,N be a N -period generalized random walk with transition probabilities

P(mt−1 → mt) =


pt(mt−1) if mt = mt−1 + 1
1− pt(mt−1) if mt = mt−1 − 1
0 otherwise

. (41)

We consider a binomial market consisting of a stock with price

S(t) = S0 exp

[
t

(
u+ d

2

)
+

(
u− d

2

)
Mt

]
, t = 0, 1, 2, . . . N, (42a)

together with a risk-free asset with value

B(t) = B(t− 1)(1 +R(t− 1)), t = 1, 2, . . . N,

where {R(t)}t=0,...,N−1, R(t) > −1, is the discretely compounded interest rate process. By
iterating the previous equation it follows that

B(t) = B0

t−1∏
k=0

(1 +R(k)), (42b)

where B0 > 0 is the initial value of the risk-free asset. As 1 + R(t) > 0, then B(t) > 0 for
all t = 0, . . . , N .

Remark 0.9. We may also introduce the continuously compounded risk-free rate process
{r(t)}t=0,...,N−1 through the formula r(t) = log(1 +R(t)), t = 0, . . . , N − 1. In terms of r(t),
we can write (42b) as B(t) = B0 exp

∑t−1
k=0 r(k), which in the case r(t) = r =constant reduces

to the formula B(t) = B0e
rt used in Section 0.3. For the study of the binomial model with

stochastic risk-free rate it is preferable to work with the process {R(t)}t=0,...,N−1.

Remark 0.10. Note carefully that the possible stock prices at time t in the market (42)
are the same as in the standard binomial market model, but now they are attained with a
different probability which depends on time and on the price of the stock at time t − 1. In
particular, in the present model S(t) is not binomially distributed as it is in the standard
binomial model, see (25), unless of course we choose pn ≡ p for all n = 1, 2, . . . .

In the following we assume that the risk-free process {R(t)}t=0,...,N−1 is measurable with
respect to the generalized random walk {Mt}t=0,...,N . In particular the stochastic process
{Mt}t=0,...,N completely defines the state of the binomial market.

The discounted value (at time t = 0) of the stock in the market (42) is defined as S∗(t) =
B0

B(t)
S(t), that is

S∗(t) = D(t)S(t) =
S(t)

(1 +R(0))(1 +R(1)) . . . (1 +R(t− 1))
, (43)
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where

D(0) = 1, D(t) =
t−1∏
k=0

(1 +R(k))−1, t = 1, . . . , N (44)

is the discount process. The market (42) is arbitrage free if there exist transition probabil-
ities (41) which make the discounted stock price process {S∗(t)}t=0,...,N a martingale; if this
martingale probability is unique, the market is complete. We discuss below one example.

The Ho-Lee model

The literature abounds of stochastic models for the risk-free rate, see [1]. In this section we
shall study the (discrete) Ho-Lee model:

R(t) = a(t) + b(t)Mt, where a(t) ∈ R and b(t) > 0, t = 0, 1, 2, . . . , N − 1. (45)

Since the minimum value of Mt is −t, then the condition R(t) > −1 is satisfied along all
paths if and only if

a(t) > b(t)t− 1, (46)

which will be assumed from now on. Our purpose is to prove that the market (42), with the
risk-free rate given by the Ho-Lee model, is complete under simple conditions on the market
parameters. We have the following analog of Theorem 0.4.

Theorem 0.7. The market (42) admits a martingale probability measure if and only if the
functions a(t), b(t) are such that

ed < 1 + a(t)− b(t)t, and 1 + a(t) + b(t)t < eu, (47)

for all t = 0, 1, . . . , N − 1. Moreover, when it exists, the martingale probability measure is
unique and it is given by pt(k) = qt(k), where

qt(k) =
1 + a(t− 1) + b(t− 1)k − ed

eu − ed
, (48)

where t = 1, . . . , N, k ∈ Im(Mt−1) = {−t + 1,−t + 3, . . . , t − 3, t − 1}. Thus, under the
conditions (47), the market (42) is complete (see Remark 0.8).

Proof. As {S∗(t)}t=0,...,N is measurable with respect to {Mt}t=0,...,N , it suffices to prove that

E[S∗(t)|M0, . . . ,Mt−1] = S∗(t− 1), t = 1, 2, . . . , N. (49)

As R(t) is measurable with respect to Mt, the discount process can be taken out from the
conditional expectation in the left hand side of (49), hence

E[S∗(t)|M0, . . . ,Mt−1] =
E[S(t)|M0, . . . ,Mt−1]

(1 +R(0)) . . . (1 +R(t− 1))
=

E[S(t)|Mt−1]

(1 +R(0)) . . . (1 +R(t− 1))
,
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where for the second equality we use that {S(t)}t=0,...,N is measurable with respect to
{Mt}t=0,...,N and that {Mt}t=0,...,N is a Markov process (see Remark 0.3). Writing S(t) =
S(t)
S(t−1)

S(t− 1) and using that S(t− 1) is Mt−1-measurable we obtain

E[S∗(t)|M0, . . . ,Mt−1] =
S(t− 1)

(1 +R(0)) . . . (1 +R(t− 1))
E[

S(t)

S(t− 1)
|Mt−1].

Next we use

S(t− 1)

(1 +R(0)) . . . (1 +R(t− 1))
=

S∗(t− 1)

1 +R(t− 1)
,

S(t)

S(t− 1)
= e

u+d
2 e

u−d
2

(Mt−Mt−1).

According to (41), the increments of the process {Mt}t=0,...,N satisfy

P(Mt −Mt−1 = 1|Mt−1 = k) = pt(k), P(Mt −Mt−1 = −1|Mt−1 = k) = 1− pt(k).

Hence

E[S∗(t)|M0, . . . ,Mt−1] =
S∗(t− 1)

1 +R(t− 1)
E[e

u+d
2 e

u−d
2

(Mt−Mt−1)|Mt−1]

= S∗(t− 1)
e
u+d
2

1 + a(t− 1) + b(t− 1)k

(
e
u−d
2 pt(k) + e−

u−d
2 (1− pt(k))

)
.

Thus in order for pt(k) to be a martingale probability it must hold that

e
u+d
2

1 + a(t− 1) + b(t− 1)k

(
e
u−d
2 pt(k) + e−

u−d
2 (1− pt(k))

)
= 1.

Solving the latter equation we find pt(k) = qt(k), where qt(k) is given by (48). Moreover
0 < qt(k) < 1 holds if and only if (47) are satisfied, which concludes the proof of the
theorem.

Remark 0.11. It is clear that the transition probabilities are constant if and only if b ≡ 0
and a(t) = a(0), for all t = 1, . . . , N−1, i.e., if and only if the risk-free rate is a deterministic
constant, in which case we go back to the standard binomial model.

Remark 0.12. While Theorem 0.7 gives a unique martingale probability, it says (of course)
nothing about the physical probability. In the applications of the Ho-Lee model it is also
assumed that the physical transition probabilities are constants and given by pt ≡ p = 1/2;
in particular, {Mt}t=0,...,N is a standard symmetric random walk in the physical probability.
(In the time-continuum Ho-Lee model, which is the one actually used in the applications,
{Mt}t=0,...,N is replaced by a Brownian motion, which is the time-continuum limit of the
standard symmetric random walk, see Section 0.5.) The assumed distribution of stock prices
and interest rates in the physical probability is important for the calibration of the model.
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Example. Let a0, b0 be constants such that b0 > 0. When

a(t) = a(0) := a0, b(t) =
b0

t
, t = 1, . . . , N − 1, (50)

the conditions (46)-(47) become

a0 > b0 − 1, ed < 1 + a0 − b0, eu > 1 + a0 + b0 (51)

and the martingale transition probabilities read

q1(0) =
1 + a0 − ed

eu − ed
, qt(k) =

1 + a0 + b0k
t−1
− ed

eu − ed
, (52)

for t = 2, . . . , N , k ∈ {−t+ 1,−t+ 3, . . . , t− 1}.
Remark. Note that, in the last example, a0 = R(0) is the initial value of the risk-free
rate, while b0 = b(1) is the volatility of the risk-free rate in the first time period. This
remark should help to figure out what are reasonable values for these two parameters, which
is important for the Matlab task in the project in Chapter 2.

European derivatives on the stock

Next we study the problem of pricing European derivatives in the market (42).

Definition 0.2. Assume that the market (42) is complete (e.g., the risk-free rate is given
by the Ho-Lee model and the conditions (47) are verified). Consider a European derivative
with maturity T = N and pay-off Y which is measurable with respect to M0, . . . ,MN (e.g.,
Y = g(S(N)) for a standard European derivative on the stock). The risk-neutral price of the
derivative is given by

ΠY (t) = D(t)−1Ẽ[D(T )Y |M0, . . . ,Mt], t = 0, . . . , T, (53)

where Ẽ denotes the (conditional) expectation in the martingale probability measure. In
particular ΠY (T ) = Y and

ΠY (0) = Ẽ[D(T )Y ] = Ẽ[
T−1∏
k=0

(1 +R(k))−1Y ]. (54)

Remark 0.13. Note that even in the case of standard financial derivatives, the discounted
pay-off is now path dependent, which makes the (numerical) computation of the expectation
in (54) considerably more difficult than in the standard binomial model.

For example, the zero coupon bond (ZCB) with face value K and maturity T is the
European style derivative that promises to pay K at time T . It follows by (53) that the
value of the ZCB at time t is given by

BK(t, T ) = KD(t)−1Ẽ[D(T )|M0, . . . ,Mt] t = 0, . . . , T = N.
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When K = 1 we denote BK(t, T ) simply as B(t, T ). Clearly, BK(t, T ) = KB(t, T ).

Example in the 3-period model with Ho-Lee risk-free rate. Consider a binomial
stock price with N = 3, u = −d = 0.07, S0 = 10 and a Ho-Lee model for the interest rate
with parameters

a(0) = R0 = 0.03, a(1) = 0.05, a(2) = 0.04, b(1) = 0.02, b(2) = 0.01.

The martingale transition probabilities are

q1(0) =
1 +R0 − ed

eu − ed
= 0.6966

q2(1) =
1 + a(1) + b(1)− ed

eu − ed
= 0.9821

q2(−1) =
1 + a(1)− b(1)− ed

eu − ed
= 0.6966

q3(2) =
1 + a(2) + 2b(2)− ed

eu − ed
= 0.9107

q3(0) =
1 + a(2)− ed

eu − ed
= 0.7680

q3(−2) =
1 + a(2)− 2b(2)− ed

eu − ed
= 0.6252

As qt(k) ∈ (0, 1), the market is complete. The binomial tree for the stock price in the
martingale probability is as follows

S(3) = 12.3368

S(2) = 11.5027

q3(2)
55

1−q3(2)

))
S(1) = 10.7251

q2(1)
55

1−q2(1)

))

S(3) = 10.7251

S(0) = 10

q1(0)
66

1−q1(0)

((

S(2) = 10

q3(0)
55

1−q3(0)

))
S(1) = 9.3239

q2(−1)
55

1−q2(−1)

))

S(3) = 9.3239

S(2) = 8.6936

q3(−2)
55

1−q3(−2)

))
S(3) = 8.1059
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The binomial tree for the interest rate is

R(2) = 0.06

R(1) = 0.07

q2(1)
66

1−q2(1)

((
R(0) = 0.03

q1(0)
66

1−q1(0)

((

R(2) = 0.04

R(1) = 0.03

q2(−1)
66

1−q2(−1)

((
R(2) = 0.02

The discount process in the martingale probability has the following distribution

D(0) = 1, D(1) =
1

1 +R(0)
= 0.9709, with prob. 1,

D(2) =
D(1)

1 +R(1)
=

{
0.9709
1+0.07

= 0.9074, with prob. q1(0)
0.9709
1+0.03

= 0.9426 with prob. 1− q1(0)
,

D(3) =
D(2)

1 +R(2)
=


0.9074
1+0.06

= 0.8560, with prob. q1(0)q2(1)
0.9074
1+0.04

= 0.8725 with prob. q1(0)(1− q2(1))
0.9426
1+0.04

= 0.9063 with prob. (1− q1(0))q2(−1)
0.9426
1+0.02

= 0.9241 with prob. (1− q1(0))(1− q2(−1))

Now assume that we want to compute the initial price of a call option on the stock with
strike K = 10 and maturity T = 3. According to (54), this price is given by

Π(0) = Ẽ[D(3)(S(3)− 10)+],

where the expectation is in the martingale probability qt(k). To compute this expectation we
need the joint distribution in the risk-neutral probability of the random variables D(3), S(3).
Using our results above we find that this joint distribution is given as in the following table:

D(3) ↓, S(3)→ 12.3368 10.7251 9.3239 8.1059
0.8560 q1(0)q2(1)q3(2) q1(0)q2(1)(1−q3(2)) 0 0
0.8725 0 q1(0)(1−q2(1))q3(0) q1(0)(1−q2(1))(1−q3(0)) 0
0.9063 0 (1−q1(0))q2(−1)q3(0) (1−q1(0))q2(−1)(1−q3(0)) 0
0.9241 0 0 (1−q1(0))(1−q2(−1))q3(−2) (1−q1(0))(1−q2(−1))(1−q3(−2))

We conclude that

Π(0) = 0.8560[(12.3368− 10)q1(0)q2(1)q3(2) + (10.7251− 10)q1(0)q2(1)(1− q3(2))]

+ 0.8725(10.7251− 10)q1(0)(1− q2(1))q3(0) + 0.9063(1− q1(0))q2(−1)q3(0) = 1.4373.
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0.5 Probability theory on uncountable sample spaces

In this section we assume that Ω is uncountable (e.g., Ω = R). In this case there is no general
procedure to construct a probability space, but only an abstract definition. In particular
a probability measure P on events A ⊆ Ω is defined only axiomatically by requiring that
0 ≤ P(A) ≤ 1, P(Ω) = 1 and that, for any sequence of disjoint events A1, A2, . . . , it should
hold

P(A1 ∪ A2 ∪ . . . ) = P(A1) + P(A2) + . . .

Moreover it is not necessary—and almost never convenient—to assume that P is defined for
all events A ⊂ Ω. We denote by F the set of events (i.e., subsets of Ω) which have a well
defined probability satisfying the properties above.

Example. Let Ω = R. We say that A ⊆ R is a Borel set if it can be written as the union
(or intersection) of countably many open (or closed) intervals. Let F be the collection of all
Borel sets. Let p : R→ R be a continuous non-negative function such that∫

R
p(ω) dω = 1.

Then P : F → [0, 1] given by

P(A) =

∫
A

p(ω) dω (55)

defines a probability. If X : R → R is a random variables, the expectation of X in the
probability measure (55) is given by

E[X] =

∫
R
X(ω)p(ω) dx, (56)

provided the integral is finite.

Fortunately for most applications (and in particular for those in financial mathematics) the
knowledge of the full probability space is usually not necessary, as in the applications one
is typically concerned only with random variables and their distributions, rather than with
generic events. More precisely, we are only interested in assigning a probability to events of
the form {X ∈ I}, where X is a random variable on the (abstract) probability space and
I ⊂ R, that is to say, events which can be resolved by one (or more) random variables.

Remark 0.14. Even though Ω is uncountable, the image of X : Ω → R need not be
uncountable (e.g., X could be piecewise constant). To avoid technical complications we
assume in the following that Im(X) does not contain isolated points. We shall refer to these
random variables as continuum random variables. The only case of non-continuum
random variable that we allow in this section is when X is a deterministic constant, in which
case the image of X consists of one real number only.

The probability P(X ∈ I) can be computed explicitly when X has a density.
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Definition 0.3. Let fX : R → [0,∞) be a continuous function, except possibly on finitely
many points. A continuum random variable X : Ω→ R is said to have probability density
fX if

P(X ∈ A) =

∫
A

fX(x) dx,

for all Borel sets A ⊆ R.

Note that the density fX satisfies ∫
R
fX(x) dx = 1

and the cumulative distribution FX(x) = P(X ≤ x) satisfies

FX(x) =

∫ x

−∞
fX(y) dy, for all x ∈ R, hence fX =

dFX
dx

.

Example. A random variable X : Ω → R is said to be a normal random variable with
mean m ∈ R and variance σ2 > 0 if it admits the density

fX(x) =
1√

2πσ2
exp

(
−|x−m|

2

2σ2

)
. (57)

We denote N (m,σ2) the set of all such random variables. A variable X ∈ N (0, 1) is called
a standard normal random variable. The cumulative distribution of standard normal
random variables is denoted by Φ(x) and is called the standard normal distribution, i.e.,

Φ(x) =
1√
2π

∫ x

−∞
e−

1
2
y2 dy.

The following theorem shows that the probability density, when it exists, provides all the
relevant statistical information on a random variable.

Theorem 0.8. The following holds for all sufficiently regular4 functions g : R→ R:

(i) Let X : Ω→ R be a random variable with density fX . Then for all Borel sets A ⊆ R,

P(g(X) ∈ A) =

∫
x:g(x)∈A

fX(x) dx.

(ii) Let X : Ω→ R be a random variable with density fX . Then

E[g(X)] =

∫
R
g(y)fX(y) dy.

4In particular, for all functions g such that the integrals in the theorem are well-defined.
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Moreover the properties 1, 2, 3, 4, 6 in Theorem 0.1 still hold for continuum random vari-
ables.

By (ii) in Theorem 0.8, the expectation and the variance of a continuum random variable X
with density fX are given by

E[X] =

∫
R
xfX(x) dx, Var[X] =

∫
R
x2fX(x) dx−

(∫
R
xfX(x) dx

)2

. (58)

Applying (58) to normal variables we obtain

X ∈ N (m,σ2) =⇒ E[X] = m, Var[X] = σ2. (59)

Joint probability density

Definition 0.4. Two continuum random variables X, Y : Ω→ R are said to have the joint
probability density fX,Y : R2 → [0,∞), if

P(X ∈ A, Y ∈ B) =

∫
A

∫
B

fX,Y (x, y) dx dy,

for all Borel sets A,B ⊆ R.

Note that if fX,Y is a joint probability density, then∫
R

∫
R
fX,Y (x, y) dx dy = 1.

Moreover if we define the joint cumulative distribution as FX,Y (x, y) = P(X ≤ x, Y ≤ y)
then

fX,Y (x, y) = ∂x∂yFX,Y (x, y).

When X, Y have the joint density fX,Y (x, y), the random variables X, Y admit the densities

fX(x) =

∫
R
fX,Y (x, y) dy, fY (y) =

∫
R
fX,Y (x, y) dx.

Example: Jointly normally distributed random variables. Let m ∈ R2 and C =
(Cij)i,j=1,2 be a symmetric, positive definite 2×2 matrix. Two random variables X1, X2 :
Ω→ R are said to be jointly normally distributed with mean m and covariance matrix C
if they admit the joint density

fX1,X2(x) =
1√

(2π)2 detC
exp

(
−1

2
(x−m)C−1(x−m)

)
, for all x = (x1, x2) ∈ R2.

(60)

The following theorem generalizes Theorem 0.8 in the presence of two variables.

49



Theorem 0.9. Let X, Y : Ω→ R be random variables with joint density fX and g : R2 → R.

(i) For all Borel sets A ⊆ R there holds

P(g(X, Y ) ∈ A) =

∫
(x,y):g(x,y)∈A

fX,Y (x, y) dx dy.

(ii) There holds

E[g(X, Y )] =

∫
R2

g(x, y)fX,Y (x, y) dx dy.

By (ii) of Theorem 0.9, if X1, X2 have the joint density fX1,X2 , then the covariance of X1, X2

can be computed as

Cov(X1, X2) = E[X1X2]− E[X1]E[X2]

=

∫
R2

x1x2fX1,X2(x1, x2) dx1 dx2

−
∫
R2

x1fX1,X2(x1, x2) dx1 dx2

∫
R2

x2fX1,X2(x1, x2) dx1 dx2.

In particular, if X1, X2 are jointly normal distributed with mean m ∈ R2 and covariance
matrix C = (Cij)i,j=1,2, we find

m = (m1,m2), Cij = Cov(Xi, Xj). (61)

The following result on the linear combination of independent normal random variables will
play an important role for the project in multi-asset options in Chapter 5.

Theorem 0.10. Let X1, X2 ∈ N (0, 1) be independent and a, b, c, d ∈ R. Then aX1 + bX2 ∈
N (0, a2 + b2). Moreover if

Y1 = aX1 + bX2, Y2 = cX1 + dX2,

and if the matrix

A =

(
a b
c d

)
is invertible, then Y1, Y2 are jointly normally distributed with zero mean and covariant matrix
C = AAT .

Stochastic processes. Martingales

Let Ω be an uncountable sample space. A stochastic process is a one parameter family
{X(t)}t≥0 of (continuum) random variables X(t) : Ω → R. We denote X(t, ω) = X(t)(ω).

50



The parameter t is referred to as the time variable, since this is what it represents in the
applications that we have in mind. For each ω ∈ Ω fixed, the function t→ X(t, ω) is called
a path of the stochastic process. If the paths are all the same for all ω ∈ Ω, then we say that
X(t) is a deterministic function of time.

Martingale stochastic processes play a fundamental role in options pricing theory5. To define
martingales on uncountable sample spaces, let FX(t) denote the information accumulated
by “looking” at the stochastic process up to time t, i.e., the collection of events resolved by
X(s) for 0 ≤ s ≤ t. Intuitively, the stochastic process {X(t)}t≥0 is a martingale if, based on
the information contained in FX(s), our “best estimate” on X(t) for t > s is X(s), i.e., we
are not able to estimate whether the process will raise or fall in the interval [s, t] with the
information available at time s. This intuitive definition is encoded in the formula

E[X(t)|FX(s)] = X(s), 0 ≤ s ≤ t, (62)

which generalizes the definition (20) of martingales in finite probability theory. The left
hand side of (62) is the conditional expectation of X(t) with respect to the information
FX(s), whose precise definition is not needed here. It can be shown that (62) implies that
martingales have constant expectation.

Brownian motion

Next we recall the definition of the most important of all stochastic processes.

Definition 0.5. A Brownian motion, or Wiener process, is a stochastic process {W (t)}t≥0

with the following properties:

1. For all 6 ω ∈ Ω, the paths are continuous (i.e., t → W (t, ω) is a continuous function)
and W (0, ω) = 0;

2. For all 0 = t0 < t1 < t2 < . . . , the increments

W (t1) = W (t1)−W (t0), W (t2)−W (t1), . . . ,

are independent random variables;

3. The increments are normally distributed, that is to say, for all 0 ≤ s < t,

P(W (t)−W (s) ∈ A) =
1√

2π(t− s)

∫
A

e−
y2

2(t−s) dy,

for all Borel sets A ⊆ R.

5In fact, this theory is also called martingale pricing theory in some literature.
6More precisely, for all ω ∈ Ω up to a set of zero probability.
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It can be shown that Brownian motions exist, yet a formal construction is technically quite
difficult and beyond the purpose of this text. In particular it can be shown that the process

{Wn(t)}t∈[0,T ], Wn(t) =
1√
n
M[nt], (63)

where [z] denotes the greatest integer smaller than or equal to z and {Mk}k∈N is a symmetric
random walk, converges (in distribution) to a Brownian motion process. Thus a Brownian
motion is the time-continuum limit of a properly rescaled symmetric random walk. In fact,
for large n ∈ N, the process {Wn(t)}t∈[0,T ] can be used as an approximation for the Brownian
motion, which is particularly useful for numerical computations.

The following very simple Matlab function can be used to generate a random path of the
Brownian motion:

function W=BMPath(T,N)

h=T/N;

W=zeros(1,N);

for j=2:N

W(j)=W(j-1)+sqrt(h)*randn;

end

Code 2: Matlab function to simulate a path of the Brownian motion.

Remark 0.15. Since the definition of Brownian motion depends on the probability measure
P, then a stochastic process {W (t)}t≥0 which is a Brownian motion in the probability measure

P will in general not be a Brownian motion in another probability measure P̃. When we want
to emphasize that {W (t)}t≥0 is a Brownian motion in the probability measure P, we shall
say that {W (t)}t≥0 is a P-Brownian motion.

Remark 0.16. Letting s = 0 in property 3 in Definition 0.5 we obtain that W (t) ∈ N (0, t),
for all t > 0. In particular, W (t) has zero expectation for all times. It can also be shown
that Brownian motions are martingales.

The following result is used a few times in the following chapters.

Theorem 0.11. Let g : (0,∞)→ R be a differentiable function and let

X(t) = g(t)W (t)−
∫ t

0

g′(s)W (s) ds.

Then

X(t) ∈ N (0,∆(t)), ∆(t) =

∫ t

0

g(s)2 ds.
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Remark 0.17. By using the formal identity d(g(t)W (t)) = g′(t)W (t)dt+g(t)dW (t), as well
as
∫ t

0
d(g(s)W (s)) = g(t)W (t), we can write the definition of X(t) in Theorem 0.11 as

X(t) =

∫ t

0

g(s)dW (s),

which is called Itô integral of the deterministic function g(t), see Section 0.8.

Equivalent probability measures. Girsanov theorem

One further technical complication arising for uncountable sample spaces is the existence of
non-trivial events with zero measure, e.g., the event {W (t) = 0} that the Brownian motion
W (t) takes value zero when t > 0. We shall need to consider the concept of equivalent
probability measures:

Definition 0.6. Two probability measure P, P̃ on the events A ∈ F are said to be equivalent
if P(A) = 0⇔ P̃(A) = 0.

Hence equivalent probability measures agree on which events are impossible. Note that in a
finite probability space all probability measures are equivalent, as in the finite case the empty
set is the only event with zero probability. The following important theorem characterizes
the relation between equivalent probability measures on uncountable sample spaces and is
known as the Radon-Nikodým theorem. We denote IA the characteristic function of the
set A ∈ F , i.e., the random variable taking value IA(ω) = 1 if ω ∈ A and zero otherwise.

Theorem 0.12 (Radon-Nikodým theorem). Let P : F → [0, 1] be a probability measure.

Then P̃ : F → [0, 1] is a probability measure equivalent to P if and only if there exists a

random variable Z : Ω → R such that Z > 0 (with probability 1), E[Z] = 1 and P̃(A) =

E[ZIA]. Moreover if P and P̃ are equivalent then Ẽ[X] = E[ZX], for all random variables
X : Ω→ R.

For example, assume Ω = R and that P and P̃ are defined as in (55), namely

P(A) =

∫
A

p(ω) dω, P̃(A) =

∫
A

p̃(ω) dω,

where A is a Borel set and p, p̃ are two continuous non-negative functions such that∫
R
p(ω) dω =

∫
R
p̃(ω) dω = 1.

Then, according to Theorem 0.12 and (56), P and P̃ are equivalent if and only if there exists
a function Z : R→ R such that Z > 0, and

P̃(A) =

∫
A

p̃(ω) dω =

∫
R
Z(ω)IA(ω)p(ω) dω =

∫
A

Z(ω)p(ω) dω.
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As the equality
∫
A
p̃(ω) dω =

∫
A
Z(ω)p(ω) dω has to be satisfied for all Borel sets A ⊂ R,

then p̃(ω) = Z(ω)p(ω) must hold for all ω ∈ R (up to a set with zero probability).

Theorem 0.13 (and Definition). Let {W (t)}t≥0 be a P-Brownian motion. Given θ ∈ R
and T > 0 define

Zθ = e−θW (T )− 1
2
θ2T . (64)

Then Pθ(A) = E[ZθIA], for all Borel sets A ⊆ R, defines a probability measure equivalent to
P, which is called Girsanov’s probability with parameter θ ∈ R.

Proof. The proof follows immediately from Theorem 0.12, since the random variable (64)
satisfies Zθ > 0 and

E[Zθ] = E[e−θW (T )− 1
2
θ2T ] =

∫
R
e−θx−

1
2
θ2T e−

x2

2T

√
2πT

dx = 1,

where we used the density of the normal random variable W (T ) ∈ N (0, T ) to compute the
expectation of Zθ in the probability measure P (see Theorem 0.8(ii)).

Note that the Girsanov probability measure Pθ depend also on T , but this is not reflected in
our notation. In the following we denote by Eθ[·] the expectation computed in the probability
measure Pθ for θ 6= 0. When θ = 0 then Pθ = P, in which case the expectation is denoted
as usual by E[·]. By Theorem 0.12 we have Eθ[X] = E[ZθX], for all random variables
X : Ω → R. Moreover we now show that Eθ[W (t)] = −θt. In fact by the Radon-Nikodým
theorem we have

Eθ[W (t)] = E[ZθW (t)] = E[e−θW (T )− 1
2
θ2TW (t)].

Adding and subtracting W (t) in the exponent of the exponential function we have

Eθ[W (t)] = E[e−θ(W (T )−W (t))− 1
2
θ2T e−θW (t)W (t)] = E[e−θ(W (T )−W (t))− 1

2
θ2T ]E[e−θW (t)W (t)],

where in the last step we used that the random variables X = e−θ(W (T )−W (t))− 1
2
θ2T and

Y = e−θW (t)W (t) are independent (being functions of the independent random variables
W (T ) −W (t) and W (t)). Using W (T ) −W (t) ∈ N (0, T − t) and W (t) ∈ N (0, t), we can
compute the expectations of X and Y as

E[X] = e−
1
2
θ2T 1√

2π(T − t)

∫
R
e−θx−

x2

2(T−t) dx = e−
θ2

2
t,

E[Y ] =
1√
2πt

∫
R
e−θx−

x2

2t x dx = −e
θ2

2
tθt.

Hence Eθ[W (t)] = E[X]E[Y ] = −θt, as claimed. It follows that {W (t)}t≥0 is not a Pθ-
Brownian motion, since Brownian motions, by definition, have zero expectation at any time.
Now we can state a fundamental theorem in probability theory with deep applications in
financial mathematics, namely Girsanov’s theorem7.

7Actually we consider only a special case of this theorem, which suffices for our purposes.
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Theorem 0.14. Let {W (t)}t≥0 be a P-Brownian motion. Given θ ∈ R and T > 0, let Pθ be
the Girsanov probability measure with parameter θ introduced in Theorem 0.13. Define the
stochastic process {W (θ)(t)}t≥0 by

W (θ)(t) = W (t) + θt. (65)

Then {W (θ)(t)}t≥0 is a Pθ-Brownian motion.

Note carefully that {W (θ)(t)}t≥0 is not a P-Brownian motion, as it follows by the fact that
E[W (θ)(t)] = θt. In particular, according to the probability measure P, the stochastic process
{W (θ)(t)}t≥0 has a drift, i.e., a tendency to move up (if θ > 0) or down (if θ < 0). However
in the Girsanov probability this drift is removed, because, as shown before, Eθ[W (θ)(t)] =
Eθ[W (t)] + θt = 0.

Multi-dimensional Girsanov theorem

We conclude this section with a generalization of Girsanov’s theorem in the presence of
two independent Brownian motions. This generalization is important for the project on
multi-asset options in Chapter 5. We limit ourselves to state without proof the analogs of
Theorems 0.13 and 0.14 required for this purpose.

Theorem 0.15 (and Definition). Let {W1(t)}t≥0, {W2(t)}t≥0 be P-independent Brownian
motions. Given θ = (θ1, θ2) ∈ R2 and T > 0 define

Zθ = e−θ1W1(T )−θ2W2(T )− 1
2

(θ21+θ22)T . (66)

Then Pθ(A) = E[ZθIA] defines a probability measure equivalent to P, which is called Gir-
sanov’s probability with parameters θ1, θ2 ∈ R.

Theorem 0.16. Let {W1(t)}t≥0, {W2(t)}t≥0 be P-independent Brownian motions. Given
θ = (θ1, θ2) ∈ R2 and T > 0, let Pθ be the Girsanov probability with parameters θ1, θ2

introduced in Theorem 0.15. Define the stochastic processes {W (θ)
1 (t)}t≥0, {W (θ)

2 (t)}t≥0 by

W
(θ)
1 (t) = W1(t) + θ1t, W

(θ)
2 (t) = W2(t) + θ2t (67)

Then {W (θ)
1 (t)}t≥0, {W (θ)

2 (t)}t≥0 are Pθ-independent Brownian motions.

0.6 Black-Scholes options pricing theory

In the binomial model the stock price at time t is a finite random variable S(t). In the Black-
Scholes model the stock price is a continuum random variable with image Im(S(t)) = (0,∞),
namely the geometric Brownian motion

S(t) = S0e
αt+σW (t). (68)
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The probability P with respect to which {W (t)}t≥0 is Brownian motion is the physical (or
real-world) probability of the Black-Scholes market. Moreover α is the instantaneous
mean of log-return and σ2 is the instantaneous variance of the geometric Brownian
motion, namely

α = lim
h→0

1

h
E[R̂h], σ2 = lim

h→0

1

h
Var[R̂h], R̂h = logS(t+ h)− logS(t). (69)

The parameter σ itself is the instantaneous volatility.

The geometric Brownian motion admits the density

fS(t)(x) =
H(x)√
2πσ2t

1

x
exp

(
−(log x− logS(0)− αt)2

2σ2t

)
, (70)

where H(x) is the Heaviside function. It can be shown that the binomial stock price
converges in distribution to the geometric Brownian motion in the time-continuum limit,
see [2].

The risk-neutral pricing formula in Black-Scholes markets

The purpose of this section is to introduce the definition of Black-Scholes price of European
derivatives from a probability theory point of view. Recall that the probabilistic formulation
of the binomial options pricing model is encoded in the risk-neutral pricing formula (36). Our
goal is to derive a similar risk-neutral pricing formula (at time t = 0) for the time-continuum
Black-Scholes model.

Motivated by the approach for the binomial model, we first look for a probability measure
in which the the discounted stock price in Black-Scholes markets is a martingale (martingale
probability measure). It is natural to seek such martingale probability within the class
of Girsanov probabilities Pθ equivalent to the physical probability P which we defined in
Theorem 0.13. To this purpose we shall need the form of the density function of the geometric
Brownian motion in the probability measure Pθ.

Theorem 0.17. Let θ ∈ R, T > 0 and Pθ be the Girsanov probability measure equivalent to
the physical probability P. The geometric Brownian motion (68) has the following density in
the probability measure Pθ:

f
(θ)
S(t)(x) =

H(x)√
2πσ2t

1

x
exp

(
−(log x− logS0 − (α− θσ)t)2

2σ2t

)
. (71)

Proof. Since

S(t) = S0e
αt+σW (t) = S0e

(α−θσ)t+σW (θ)(t), W (θ)(t) = W (t) + θt

and since {W (θ)(t)}t≥0 is a Brownian motion in the probability measure Pθ (see Girsanov’s

Theorem 0.14), then the density f
(θ)
S(t) is the same as fS(t) with α replaced by α− θσ.
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Let Eθ[·] denote the expectation in the probability Pθ. Recall that martingales have constant
expectation. Hence in the martingale (or risk-neutral) probability measure the expectation
of the discounted value of the stock must be constant, i.e., Eθ[S(t)] = S0e

rt. This condition
alone suffices to single out a unique possible value of θ.

Theorem 0.18. The identity Eθ[S(t)] = S0e
rt holds if and only if θ = q, where

q =
α− r
σ

+
σ

2
. (72)

Proof. Using the density (71) of S(t) in the measure Pθ and (58) we have

Eθ[S(t)] =

∫
R
xf

(θ)
S(t)(x) dx =

1√
2πσ2t

∫ ∞
0

exp

(
−(log x− logS0 − (α− θσ)t)2

2σ2t

)
dx.

With the change of variable y = log x−logS0−(α−θσ)t

σ
√
t

, dx = xσ
√
t dy, we obtain

Eθ[S(t)] =
S0√
2π
e(α−θσ)t

∫
R
e−

y2

2
+σ
√
ty dy = S0e

(α−θσ+σ2

2
)t 1√

2π

∫
R
e−

(y+σ
√
t)2

2 dy.

As 1√
2π

∫
R e
−x

2

2 dx = 1, the result follows.

Even though the validity of Eθ[S(t)] = S0e
rt is only necessary for the discounted geometric

Brownian motion to be a martingale, one can show that the following result holds.

Theorem 0.19. The discounted value of the geometric Brownian motion stock price is a
martingale in the probability measure Pθ if and only if θ = q, where q is given by (72).

The previous discussion leads us to the following definition.

Definition 0.7. Given α ∈ R, σ > 0, r ∈ R and T > 0, the probability measure

Pq(A) = E[e−qW (T )− 1
2
q2T IA], q =

α− r
σ

+
σ

2

is called the martingale probability, or risk-neutral probability, in the interval [0, T ]
of the Black-Scholes market with parameters α, σ, r.

Remark 0.18. In the risk-neutral probability the stock price is given by the geometric
Brownian motion

S(t) = S(0)e(r−σ
2

2
)t+σW̃ (t), (73)

where, by Girsanov’s theorem,

W̃ (t) := W (q)(t) = W (t) +

(
α− r
σ

+
σ

2

)
t (74)

is a Brownian motion in the risk-neutral probability. This follows by replacing α = r+ qσ−
1
2
σ2 into (68).
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At this point we have all we need to define the Black-Scholes price of European derivatives
at time t = 0 using the risk-neutral pricing formula.

Definition 0.8. The Black-Scholes price at time t = 0 of the European derivative with
pay-off Y at maturity T is given by the risk-neutral pricing formula

ΠY (0) = e−rTEq[Y ], (75)

i.e., it equals the expected value of the discounted pay-off in the risk-neutral probability mea-
sure of the Black-Scholes market.

In the case of standard European derivatives we can use the density of the geometric Brow-
nian motion in the risk-neutral probability measure to write the Black-Scholes price in the
following integral form.

Theorem 0.20. For the standard European derivative with pay-off Y = g(S(T )) at maturity
T > 0, the Black-Scholes price at time t = 0 can be written as ΠY (0) = v0(S0), where S0 is
the price of the underlying stock at time t = 0 and v0 : (0,∞)→ R is the pricing function
of the derivative at time t = 0, which is given by

v0(x) = e−rT
∫
R
g(xe(r−σ

2

2
)T+σ

√
Ty)e−

1
2
y2 dy√

2π
. (76)

Proof. Replacing θ = q in (71) we obtain that the geometric Brownian motion has the
following density in the risk-neutral probability measure Pq:

f
(q)
S(t)(x) =

H(x)√
2πσ2t

1

x
exp

(
−

(log x− logS0 − (r − σ2

2
)t)2

2σ2t

)
. (77)

Using the density (77) for t = T in the risk-neutral pricing formula (75) we obtain

ΠY (0) = e−rTEq[Y ] = e−rTEq[g(S(T ))] =

∫
R
g(x)f

(q)
S(T )(x) dx

=
e−rT√
2πσ2t

∫ ∞
0

g(x)

x
exp

(
−

(log x− logS0 − (r − σ2

2
)t)2

2σ2t

)
dx.

With the change of variable y = log x−logS0−(α−θσ)t

σ
√
t

we obtain

ΠY (0) = e−rT
∫
R
g(S0e

(r−σ
2

2
)T+σ

√
Ty)e−

1
2
y2 dy√

2π
= v0(S0),

as claimed.

Remark 0.19. Of course we are tacitly assuming that the pay-off function g is such that
the integral in the right hand side of (76) is finite.
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For instance, in the case of the European call option with strike K and maturity T , for which
the pay-off function is g(z) = (z −K)+, Theorem 0.20 gives

Πcall(0) = C0(S0, K, T ), C0(x,K, T ) = xΦ(d(+))−Ke−rTΦ(d(−)) (78a)

where Φ is the standard normal distribution and

d(±) =
log x

K
+ (r ± 1

2
σ2)T

σ
√
T

. (78b)

Definition 0.8 is only valid at time t = 0. The risk-neutral pricing formula for t > 0 is

ΠY (t) = e−r(T−t)Eq[Y |FS(t)], (79)

which generalizes (36) to the time continuum case. The right hand side of (79) is the expec-
tation of the discounted pay-off in the risk-neutral probability measure conditional to the
information available at time t, which in a Black-Scholes market is determined by the history
of the stock price up to time t. It can be shown that in the case of the standard European
derivative with pay-off Y = g(S(T )) at maturity T , the risk-neutral pricing formula (79)
entails that the Black-Scholes price at time t ∈ [0, T ] can be written in the integral form

ΠY (t) = v(t, S(t)), where v(t, x) =
e−rτ√

2π

∫
R
g
(
xe(r−σ

2

2
)τeσ

√
τ y
)
e−

y2

2 dy, τ = T − t. (80)

Hence the pricing function v(t, x) of the derivative at time t is the same as the pricing
function (76) at time t = 0 but with maturity T replaced by the time τ left to maturity,
which is rather intuitive.

0.7 The Monte Carlo method

The Monte Carlo method is, in its simplest form, a numerical method to compute the
expectation of a random variable. Its mathematical validation is based on the Law of
Large Numbers, which states the following: Suppose {Xi}i≥1 is a sequence of i.i.d. random
variables with expectation E[Xi] = µ. Then the sample average of the first n components of
the sequence, i.e.,

X =
1

n
(X1 +X2 + · · ·+Xn),

converges (in probability) to µ as n→∞.

The law of large numbers can be used to justify the fact that if we are given a large number
of independent trials X1, . . . , Xn of a random variable X, then

E[X] ≈ 1

n
(X1 +X2 + · · ·+Xn).
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To measure how reliable is the approximation of E[X] given by the sample average, consider
the standard deviation of the trials X1, . . . , Xn:

sX =

√√√√ 1

n− 1

n∑
i=1

(X −Xi)2.

Viewing X1, . . . , Xn as independent copies of X, a simple application of the Central Limit
Theorem proves that the random variable

µ−X
sX/
√
n

converges in distribution to a standard normal random variable. We use this result to show
that the true value µ of E[X] has about 95% probability to be in the interval

[X − 1.96
s√
n
,X + 1.96

s√
n

].

Indeed, for n large,

P
(
−1.96 ≤ µ−X

sX/
√
n
≤ 1.96

)
≈
∫ 1.96

−1.96

e−x
2/2 dx√

2π
≈ 0.95.

An application to Black-Scholes theory

Using the Monte Carlo method and the risk-neutral pricing formula (37), we can approximate
the Black-Scholes price at time t = 0 of the European derivative with pay-off Y and maturity
T > 0 with the sample average

ΠY (0) = e−rT
Y1 + . . . Yn

n
, (81)

where Y1, . . . , Yn is a large number of independent trials of the pay-off. Each trial Yi is
determined by a path of the stock price. Letting 0 = t0 < t1 < · · · < tN = T be a partition
of the interval [0, T ] with size ti − ti−1 = h, we may construct a sample of n paths of the
geometric Brownian motion on the given partition with the following simple Matlab function:

Note carefully that the stock price is modeled as a geometric Brownian motion with mean of
log return α = r − σ2/2, which means that the geometric Brownian motion is risk-neutral,
see (77). This is of course correct, since the expectation in (81) that we want to compute is in
the risk-neutral probability measure. The following Matlab code compute the Black-Scholes
price of a call option using the Monte Carlo method. The code also computes the statistical
error

Err = 1.96
s√
n

(82)

60



function S=GBMPaths(s,sigma,r,T,N,n)

S=zeros(n,N);

t=linspace(0,T,N);

for i=1:n

W=BMPath(T,N);

S(i,:)=s*exp((r-sigma^2/2)*t(:)+sigma*W(:));

end

Code 3: Matlab function to simulate a n paths of the geometric Brownian motion.

function [price, conf95]=MonteCarloCall(s,sigma,r,K,T,N,n)

tic

S=GBMPaths(s,sigma,r,T,N,n);

payOff=max(0,S(:,N)-K);

price=exp(-r*T)*mean(payOff);

conf95=1.96*std(payOff)/sqrt(n);

toc

Code 4: Matlab function to compute the initial Black-Scholes price of European calls using
the Monte Carlo method.

of the Monte Carlo price, where s is the standard deviation of the pay-off trials.

For instance, by running the command

[price, conf95] = MonteCarloCall(10, 0.5, 0.01, 10, 1, 100, 100000)

we obtain the output

price = 1.9976

conf95 = 0.0249

The calculation took about half a second. The exact price for the given call obtained by using
the formula (78) is 2.0144, which lies within the confidence interval [1.9976−0.0249, 1.9976+
0.0249] = [1.9727, 2.0225] of the Monte Carlo price. Remark: The formula (78) is imple-
mented in Matlab by the function blsprice.

Control variate Monte Carlo

The Monte Carlo method just described is also known as crude Monte Carlo and can be
improved in a number of ways. For instance, it follows by (82) that in order to reduce
the error of the Monte Carlo price, one needs to either (i) increase the number of trials n
or (ii) reduce the standard derivation s. As increasing n can be very costly in terms of
computational time, the approach (ii) is preferable. There exist several methods to decrease
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the standard deviation of a Monte Carlo computation, which are collectively called variance
reduction techniques. Here we describe the control variate method.

Suppose we want to compute E[X]. The idea of the control variate method is to introduce
a second random variable Q for which E[Q] can be computed exactly and then write

E[X] = E[Y ] + E[Q], where Y = X −Q.

Hence the Monte Carlo approximation of E[X] can now be written as

E[X] ≈ Y1 + · · ·+ Yn
n

+ E[Q],

where Y1, . . . , Yn are independent trials of the random variable Y . This approximation
improves the crude Monte Carlo estimate (i.e., without control variate) if the sample average
estimator of E[Y ] is better than the sample average estimator of E[X]. Because of (82), this
will be the case if (sY )2 < (sX)2. It will now be shown that the latter inequality holds if
X,Q have a positive large correlation. Letting X1, . . . , Xn be independent trials of X and
Q1, . . . , Qn be independent trials of Q, we compute

(sY )2 =
1

n− 1

n∑
i=1

(Y − Yi)2 =
1

n− 1

n∑
i=1

((X −Q)− (Xi −Qi))
2

= (sX)2 + (sQ)2 − 2C(X,Q),

where C(X,Q) is the sample covariance of the trials (X1, . . . , Xn), (Q1, . . . , Qn), namely

C(X,Q) =
n∑
i=1

(X −Xi)(Q−Qi).

Hence (sY )2 < (sX)2 holds provided C(X,Q) is sufficiently large and positive (precisely,
C(X,Q) > sQ/

√
2). As C(X,Q) is an unbiased estimator of Cov(X,Q), then the use of the

control variate Q will improve the performance of the crude Monte Carlo method if X,Q
have a positive large correlation. An application of this method to the Asian option is one
of the goals of the project in Chapter 3.

0.8 Introduction to Itô’s integral and stochastic calcu-

lus

In Black-Scholes theory the price of the stock is a deterministic function of the Brownian
motion, namely, S(t) = f(t,W (t)), where f(t, x) = S0 exp(αt+σx), see (68). In this section
we discuss more general models in which the stock price at time t depends on the whole
path of the Brownian motion in the interval [0, t] and not just on W (t). In these models the
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Brownian motion still remains the only source of randomness, but we have now access to a
much larger variety of market models.

The simplest generalization consists in assuming that the stock price S(t) depends on the
time integral of the Brownian motion in the interval [0, t], as in the following example

S(t) = S0 exp

(∫ t

0

α(τ) dτ −
∫ t

0

σ′(τ)W (τ)dτ + σ(t)W (t)

)
, (83)

where α(t), σ(t) are continuously differentiable (deterministic) functions of time. Note that
when α and σ are constant, (83) reduces to the geometric Brownian motion (68).

Exercise 0.1. Prove that α(t) is the instantaneous mean of log-return and σ(t)2 is the
instantaneous variance of the stock price (83).

The stock price (83) contains the time integral of the stochastic process X(t) = σ′(t)W (t).
Since σ(t) is continuously differentiable and the Brownian motion has continuous paths, then
t→ X(t) is continuous and therefore the integral in (83) can be understood in the standard
Riemann sense. We recall that the Riemann integral of a continuous function g : [0, t]→ R
in the interval [0, t] is defined as the limit of the Riemann sum, namely∫ t

0

g(τ) dτ = lim
n→∞

m(n)−1∑
i=0

g(t
(n)
i )(t

(n)
i+1 − t

(n)
i ), (84)

where πn = {0 = t
(n)
0 , t

(n)
1 , . . . , t

(n)
m(n) = t} is an increasing sequence partitions of the interval

[0, t] (i.e., πn ⊂ πn+1) such that

max
i=0,...,m(n)−1

(t
(n)
i+1 − t

(n)
i )→ 0 as n→∞

(i.e., the length of each subinterval of the partition tends to zero in the limit n→∞).

Another way to introduce an integral stochastic process from the Brownian motion is to
replace the time increments in (84) with the increments of the Brownian motion. More
precisely, given a stochastic process {X(t)}t≥0 with continuous paths and measurable with
respect to the Brownian motion, define

In(t) =

m(n)−1∑
i=0

X(t
(n)
i )(W (t

(n)
i+1)−W (t

(n)
i )).

Note that the random variables X(t
(n)
i ) and W (t

(n)
i+1)−W (t

(n)
i ) within the sum are indepen-

dent, because X(t
(n)
i ) depends only on the Brownian motion up to time t

(n)
i (as {X(t)}t≥0 is

assumed to be measurable with respect to {W (t)}t≥0), and the increment W (t
(n)
i+1)−W (t

(n)
i )

is independent of W (t
(n)
i ) (by definition of Brownian motion). It follows that

E[In(t)] =

m(n)−1∑
i=0

E[X(t
(n)
i )(W (t

(n)
i+1)−W (t

(n)
i ))] =

m(n)−1∑
i=0

E[X(t
(n)
i )]E[W (t

(n)
i+1)−W (t

(n)
i )] = 0.

(85)
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The Itô’s integral of X(t) in the interval [0, t] is defined as the limit (in probability) of the
random variable In(t) when n→∞ and is denoted as follows:∫ t

0

X(τ)dW (τ) = lim
n→∞

In(t).

By (85), the Itô’s integral has zero expectation for all times:

E[

∫ t

0

X(τ)dW (τ)] = 0, for all t > 0. (86)

Note carefully that Itô’s integrals are random variables, and thus {I(t)}t≥0 is a stochastic
process. In fact, under mild regularity assumptions on the integrand stochastic process
{X(t)}t≥0, {I(t)}t≥0 is a martingale. I(t) can be expressed in terms of the Brownian motion
and Riemann integrals of the Brownian motion by using the following fundamental result.

Theorem 0.21 (Itô’s formula). Let f = f(t, x) be a function with continuous partial deriva-
tives ∂tf, ∂xf, ∂

2
xf . Then

f(t,W (t)) = f(0, 0) +

∫ t

0

[
∂tf(τ,W (τ)) +

1

2
∂2
xf(τ,W (τ))

]
dτ +

∫ t

0

∂xf(τ,W (τ)) dW (τ).

(87)

Examples

� Choosing f(t, x) = f(x) = x2, Itô’s formula becomes

W (t)2 = t+ 2

∫ t

0

W (τ)dW (τ), hence

∫ t

0

W (τ) dW (τ) =
1

2
W (t)2 − t

2
.

� Choosing f(t, x) = σ(t)x, where σ is a continuously differentiable (deterministic) func-
tion of time, we obtain

σ(t)W (t) =

∫ t

0

σ′(τ)W (τ) dτ +

∫ t

0

σ(τ) dW (τ),

hence we can rewrite the stochastic process (83) as

S(t) = S0 exp

(∫ t

0

α(τ) dτ +

∫ t

0

σ(τ) dW (τ)

)
.

� Choosing f(t, x) = tx we obtain∫ t

0

τ dW (τ) = tW (t)−
∫ t

0

W (τ) dτ

and thus we express the Itô integral on the left in terms of W (t) and of the standard
Riemann integral of W (t) on the right.
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Exercise 0.2. Use Itô’s formula to express the following Itô integrals in terms of W (t) and
Riemann integrals of W (t):∫ t

0

W (τ)n dW (τ) (n > 0),

∫ t

0

cos(τ W (τ)) dW (τ),

∫ t

0

dW (τ)√
1 +W (τ)2

.

Itô processes and stochastic differential equations

Now that we have at our disposal two different notions of integral of stochastic processes,
we can combine them to construct a general class of stochastic processes.

Definition 0.9. Let {A(t)}t≥0 and {B(t)}t≥0 be stochastic processes with continuous paths
and measurable with respect to the Brownian motion {W (t)}t≥0. The stochastic process

X(t) = X(0) +

∫ t

0

A(τ) dτ +

∫ t

0

B(τ) dW (τ) (88)

is called Itô’s process with drift rate A(t) and diffusion rate B(t). If A(t), B(t) are
deterministic functions of X(t) itself, that is if

A(t) = a(t,X(t)), B(t) = b(t,X(t)), for some (smooth) functions a, b : (0,∞)× R→ R

then (88) is called a stochastic differential equation (or SDE).

As we shall see later, stochastic processes in finance are SDE’s. When A ≡ 0 the Itô process
reduces to a pure Itô integral (plus the time independent random variable X(0)) and thus
it is a martingale. .

Itô’s formula in Theorem 0.21 generalizes to Itô’s processes as follows.

Theorem 0.22 (Itô’s formula). Let f = f(t, x) be a function with continuous partial deriva-
tives ∂tf, ∂xf, ∂

2
xf and {X(t)}t≥0 the Itô process (88) Then

f(t,X(t)) =f(0, X(0)) +

∫ t

0

(
∂tf(τ,X(τ)) + A(τ)∂xf(τ,X(τ)) +

1

2
B(τ)2∂2

xf(τ,X(τ))

)
dτ

+

∫ t

0

B(τ)∂xf(τ,X(τ)) dW (τ). (89)

By the previous theorem, if {X(t)}t≥0 is an Itô process with drift rate {A(t)}t≥0 and diffusion
rate {B(t)}t≥0, then {f(t,X(t))}t≥0 is an Itô process with drift rate {A∗(t)}t≥0 and diffusion
rate {B∗(t)}t≥0 given by

A∗(t) = ∂tf(t,X(t)) + A(t)∂xf(t,X(t)) +
1

2
B(t)2∂2

xf(t,X(t)), B∗(t) = B(t)∂xf(t,X(t)).
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In the particular case when {X(t)}t≥0 is a SDE, the drift rate {A∗(t)}t≥0 of the process
{f(t,X(t))}t≥0 is given by

A∗(t) =

[
∂tf(t, x) + a(t, x)∂xf(t, x) +

1

2
b(t, x)2∂2

xf(t, x)

]
x=X(t)

.

Hence we obtain the following corollary of Theorem 0.22.

Corollary 0.1. Let {X(t)}t≥0 be the stochastic differential equation

X(t) = X(0) +

∫ t

0

a(τ,X(τ)) dτ +

∫ t

0

b(τ,X(τ)) dW (τ). (90)

If f(t, x) satisfies the partial differential equation (PDE)

∂tf(t, x) + a(t, x)∂xf(t, x) +
1

2
b(t, x)2∂2

xf(t, x) = 0, t > 0, x ∈ R, (91)

then the stochastic process {f(t,X(t))}t≥0 is a martingale.

Equation (91) is called the (backward) Kolmogorov PDE associated to the SDE (90).
Before discussing some examples, it is convenient to introduce the so-called stochastic
differential notation. In this notation, the Itô process (88) is written as

dX(t) = A(t) dt+B(t) dW (t).

Note that the d in dX(t) and dW (t) is not a differential operator, because X(t) and W (t)
are not differentiable functions. However if we formally integrate the above expression from
0 to t and use

∫ t
0
dX(τ) = X(t) − X(0), then we go back to the original integral notation

in (88). Itô’s formula in Theorem 0.22 reads, in this notation,

df(t,X(t)) = [∂tf(t,X(t))+A(t)∂xf(t,X(t))+
1

2
B(t)2∂2

xf(t,X(t))] dt+B(t)∂xf(t,X(t)) dW (t).

(92)
Moreover the general SDE can be written as

dX(t) = a(t,X(t)) dt+ b(t,X(t)) dW (t). (93)

If b ≡ 0 in the previous expressing and we “divide” by dt, the SDE becomes the ordi-
nary differential equation (ODE) dX(t)

dt
= a(t,X(t)). In fact, SDE’s can be interpreted as

generalizations of ODE’s in which we add a random term in the right hand side.

Remark 0.20. In this short introduction to stochastic calculus we use the stochastic dif-
ferential notation only as a way to simplify our formulas, but it is actually a very powerful
tool, see [2].
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SDE’s in finance

As mentioned before, all stochastic processes in finance are given in the form of stochastic
differential equations. Let us show for instance that the geometric Brownian motion (68) is
an SDE. First we write (68) in the form

S(t) = S0e
X(t) = f(X(t)), X(t) = αt+ σW (t), f(x) = S0e

x. (94)

Hence by Itô’s formula in Theorem 0.22 we find (using the stochastic differential nota-
tion (92))

dS(t) = (αS0e
X(t) +

1

2
σ2S0e

X(t)) dt+ σS0e
X(t)dW (t),

i.e.,

dS(t) = (α +
1

2
σ2)S(t) dt+ σS(t) dW (t). (95)

Thus the geometric Brownian motion has the form (100) with a(t, x) = (α + 1
2
σ2)x and

b(t, x) = σx. In particular, the geometric Brownian motion is a linear stochastic differ-
ential equation, since the functions a, b are linear in the x-variable. In this context, the
geometric Brownian motion expressed in the form (94), i.e., as a deterministic function of
W (t), is said to be the solution of the SDE (95) (with initial datum S(0) = S0).

The SDE (95) is posed in the physical probability, because it contains the Brownian motion

W (t). If we replace W (t) with W̃ (t) given by (74), i.e.,

dW (t) = dW̃ (t)−
(
α− r
σ

+
σ

2

)
dt,

the SDE (95) becomes

dS(t) = rS(t) dt+ σS(t) dW̃ (t), (96)

which can also be obtained by directly applying Itô’s formula to (73). The SDE (96) implies
at once that the discounted stock price {e−rtS(t)}t≥0 is a martingale in the risk-neutral
probability. In fact, by Itô’s formula (92) with f(t, x) = e−rtx, we have

d(e−rtS(t)) = σS(t)e−rtdW̃ (t),

that is, {e−rtS(t)}t≥0 is a SDE with zero drift and therefore it is a martingale in the risk-
neutral probability.

Stochastic differential equations can be used to generalize the Black-Scholes model in different
ways. For instance, in the so-called constant elasticity variance model, the stock price
in the risk-neutral probability is given by the following SDE:

dS(t) = rS(t) dt+ σS(t)γ dW̃ (t), (97)

where γ is a positive constant (the Black-Scholes model is recovered for γ = 1). The CEV
model is useful to reproduce skew implied volatility curves.
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SDE’s are also used in finance to model stochastic risk-free rates and stochastic volatilities.
For instance, given positive constants a, b, c, the SDE on the risk-free rate

dr(t) = a(b− r(t)) dt+ c
√
r(t) dW (t) (98a)

is called CIR (Cox-Ingersoll-Ross) model, while the same SDE applied to the instantaneous
variance ν(t) = σ(t)2, i.e.,

dν(t) = a(b− ν(t)) dt+ c
√
ν(t) dW (t) (98b)

is called Heston model. Note that the SDE’s (97)-(98) are non-linear and thus cannot in
general be solved explicitly (as we did above for the geometric Brownian motion; see also
the next exercise). However they can easily be solved numerically, as shown in the following
section.

Exercise 0.3. Consider the SDE

dX(t) = µ(θ −X(t)) dt+ c dW (t), (99)

where µ, θ, c are constants. Solve (99) (i.e., find X(t) as a function of W (t) and Riemann
integrals of W (t)) and show that X(t) is normally distributed. Find E[X(t)], Var[X(t)].
Finally, find functions α(t), β(t) such that the process

Y (t) = e−α(t)X(t)−β(t)

is a martingale. HINTS: To solve the SDE, apply Itô’s formula to eµtX(t), then apply Theo-
rem 0.11 to the resulting expression of X(t) to prove that it is normally distributed. For the
last part of the exercise, find α(t), β(t) for which the drift of Y (t) is zero (see Corollary (0.1)).

Numerical solutions of SDE’s

The problem under discussion in this section is the following: Given a SDE

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t) (100)

how can we compute numerically a generic path of the stochastic process {X(t)}t≥0? If the
SDE can be solved explicitly in terms of W (t) and Riemann integrals of W (t), then all we
need to do is to construct paths of the Brownian motion, for instance using Code 2. This
works in particular for the geometric Brownian motion, i.e., within the Black-Scholes model.
However for more complex market models, where the stock price or other parameters are non-
linear SDE’s (as in the examples discussed in the previous section), the paths of {X(t)}t≥0

must be simulated by using directly the SDE (100). The simplest way to do this is by
applying the so-called Euler-Maruyama method, which is the generalization to SDE’s of the
forward Euler method for ODE’s.
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Consider the SDE (100) with initial datum X(0) = X0, which we assume to be a constant
(e.g., the initial stock price). Given the uniform partition

0 = t0 < t1 < · · · < tN = T, tj = j
T

N
, ∆t = tj+1 − tj =

T

N

of the interval [0, T ], we define

X(tj) = Xj, j = 0, . . . , N, Wj = W (tj).

Note that Xj,Wj are random variables and that

Gj =
Wj −Wj−1√

∆t

are independent standard normal random variables for j = 1, . . . , N . The (explicit) finite
difference approximation of (100) is

Xj = Xj−1 + a(tj−1, Xj−1)∆t+ b(tj−1, Xj−1)
√

∆tGj. (101)

The following Matlab function applies the iterative equation (101) to the geometric Brownian
motion SDE (96), for which (101) becomes

Sj = Sj−1 + rSj−1∆t+ σSj−1

√
∆tGj, S(0) = S0,

where S0 > 0 is the initial stock price. The output S contains one path of the stochastic
process S(t) along the time partition {t0 = 0, t1, . . . , tN = T}, that is, a path (S(0) =
S0, S(t1), . . . , S(tN) = S(T )).

function S = GbmSDE(s0,r,sigma,T,N)

dt=T/N;

S=zeros(1,N);

t=zeros(1,N);

G=randn(1,N);

S(1)=s0;

for j=2:N

S(j)=S(j-1)+r*S(j-1)*dt+sigma*S(j-1)*sqrt(dt)*G(j-1);

t(j)=t(j-1)+dt;

end

Code 5: Matlab function to simulate a path of the geometric Brownian motion by solving
numerically the SDE (96).

Exercise 0.4 (Matlab). Write a Matlab function that generates n random paths of the
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SDE (97) for the stock price in the CEV model using the Euler-Maruyama method. Then
apply the Monte Carlo method to compute the price of call/put options at time t = 0 in the
CEV model and compare the results obtained with the Black-Scholes price (use γ ∈ [0.8, 1.2]
with 105 paths). Plot (in the same figure) the option price at t = 0 as a fuction of S(0) for
different values γ and (in another figure) the option price as function of γ. Discuss your
findings. To measure the accuracy of your results, check that the option prices in the CEV
model and the Black-Scholes model are the same for γ = 1 and verify the put-call parity for
different values of γ.
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Chapter 1

A project on the trinomial model

As opposed to the binomial options pricing model, the trinomial model is an incomplete
model, that is to say, the risk-neutral price of European derivatives in a trinomial market
is not uniquely defined by the arbitrage-free pricnciple. Some scholars believe that real
markets are incomplete, because investors assign different values to the market price of risk
(i.e., choose a different risk-neutral probability to price European derivatives). In this project
the trinomial model is studied in details, in particular regarding the problem of pricing and
hedging European derivatives by “almost” self-financing and hedging portfolios.

1.1 The trinomial model

In the trinomial model the stock price is allowed to move in three different directions at each
time step, namely S(0) = S0 > 0 and

S(t) =


S(t− 1)eu with prob. pu
S(t− 1)em with prob. pm
S(t− 1)ed with prob. pd

t = 1, . . . , N,

where u > m > d, 0 < pu, pm, pd < 1 and pu + pm + pd = 1. The risk-free asset has value
B(t) = B0e

rt, where r is constant.

The possible prices of the stock at time t = 0, . . . , N satisfy

S(t) ∈ {S0e
Nu(t)u+Nd(t)d+(t−Nu(t)−Nd(t))m for Nu(t), Nd(t) = 0, . . . , t and Nu(t) +Nd(t) ≤ t}.

It follows that the number of possible stock prices at time t is

t∑
Nu=0

t−Nu∑
Nd=0

1 =
t∑

Nu=0

(t−Nu + 1) = (t+ 1)t+ t+ 1−
t∑

Nu=0

Nu

= (t+ 1)t+ t+ 1− (t+ 1)t

2
=

(t+ 1)(t+ 2)

2
.
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Thus the number of nodes in the trinomial tree grows quadratically—while we recall that
for the binomial model this grow was linear (t + 1 possible prices at time t). To reduce the
number of nodes in the trinomial tree we shall assume from now on that the recombination
condition holds:

m =
u+ d

2
and thus restrict the trinomial stock price to the form

S(t) =


S(t− 1)eu with prob. pu
S(t− 1)e

u+d
2 with prob. pm

S(t− 1)ed with prob. pu

t = 1, . . . , N, (1.1)

with u > d. In this case the possible stock prices at time t belong to the set

{S0e
(u−d)(Nu(t)−Nd(t))/2+(u+d)t/2), Nu(t), Nd(t) = 0, . . . , t},

which contains 2t + 1 elements. Hence the number of nodes of the trinomial tree with
the recombination condition grows linearly, as for the binomial model. In the following we
restrict to this case for simplicity.

Probabilistic formulation. Let Ω = {−1, 0, 1}N . Given p = (pu, pm, pd) such that 0 <
pu, pm, pd < 1 and pu + pm + pd = 1, we define the probability Pp on the sample space Ω by
letting

Pp(ω) = pN+(ω)
u pN0(ω)

m p
N−(ω)
d ,

where N±(ω) is the number of ±1 in the sample ω and N0(ω) = N − N+(ω) − N−(ω) the
number of 0’s. The trinomial stock price can be regarded as a stochastic process in the
probability space (Ω,Pp). To see this let the stochastic process {Xt}t=1,...,N be defined on
ω = (γ1, . . . , γN) ∈ Ω as X(ω) = γt, that is

Xt(ω) =


−1 if γt = −1
0 if γt = 0
1 if γt = 1

. (1.2)

Note that the random variables X1, . . . , XN are independent and identically distributed
(i.i.d.). We can write (1.1) as

S(t) = S(t− 1) exp

[(
u+ d

2

)
+

(
u− d

2

)
Xt

]
. (1.3)

Iterating the previous identity, the trinomial stock price at time t = 1, . . . , N is

S(t) = S0 exp

[
t

(
u+ d

2

)
+

(
u− d

2

)
Zt

]
, Zt = X1 + · · ·+Xt. (1.4)

Hence S(t) : Ω → R and {S(t)}t=0,...,N is a stochastic process on the probability space
(Ω,Pp). Letting Z0 = 0, the process {S(t)}t=0,...,N is measurable with respect to {Zt}t=0,...,N .
Moreover we have the following analogue of Theorem 0.4.
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Theorem 1.1. The probability measure Pp is a martingale measure if and only if p = q =
(qu, qm, qd), where (qu, qm, qd) satisfy

que
u + qme

u+d
2 + qde

d = er, (1.5a)

qu + qm + qd = 1, (1.5b)

0 < qu, qm, qd < 1. (1.5c)

Task 1.1. Prove the theorem.

We remark that there exists infinitely many triples that satisfy (1.5). Indeed the solution
of (1.5a)-(1.5b) can be written in parametric form as

qu =
er − ed

eu − ed
− ω ed/2

eu/2 + ed/2
, qm = ω, qd =

eu − er

eu − ed
− ω eu/2

eu/2 + ed/2
(1.6)

and, under suitable conditions on the market parameters r, u, d and the free parameter ω,
all such solutions define a probability, i.e., they satisfy (1.5c). Note also that in the limit
ω → 0 the trinomial model reduces to the binomial model and the solutions (1.6) converge
to the martingale probability measure of the binomial model, see Theorem 0.4.

Task 1.2. Let r > 0, u > 0 and u = −d. Show that the triples (1.6) satisfy (1.5c) if and
only if

u > r and 0 < ω <
eu − er

eu − 1
.

The existence of a martingale probability measure ensures that the trinomial market is free
of self-financing arbitrages, see Remark 0.6. However the non-uniqueness of such measure
prevents to fix uniquely the price of European derivatives. Some practitioners have a positive
view on this property of the trinomial model, since the freedom in choosing the parameter ω
can be used to better calibrate the model. Moreover, regardless of which martingale measure
one chooses, it is generally not possible to hedge European derivatives self-financially, that
is to say, the trinomial model is incomplete (see Remark 0.8).

Task 1.3. Consider a one-period trinomial model with u = −d 6= 0 and a derivative with
pay off Y = g(S(1)). Show that a (constant) portfolio (hS, hB) hedging the derivative exists
if and only if

g(S0e
−u)− g(S0)e−u − g(S0) + g(S0e

u)e−u = 0.

Deduce from here that, for instance, the call option with strike K = S0 cannot be hedged.

Incomplete models, of which the trinomial model is just an example, are investigated exten-
sively by scholars and the community is divided among those who believe that incomplete
models should be rejected and others who instead believe that real markets are incomplete
and therefore incomplete models are more realistic.
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1.2 Pricing options in incomplete markets

In the trinomial model there exist infinitely many martingale probabilities (qu, qm, qd). Each
martingale measure gives rise to a different price for the European derivative with pay-off Y
at maturity T = N ; denoting by Eω the expectation in the probability measure (1.6) and by
ΠY (t, ω) the price of the derivative derived from this measure, we have

ΠY (t, ω) = e−r(N−t)Eω[Y |S(1), . . . , S(t)].

Task 1.4. Prove the recurrence formula ΠY (N,ω) = Y ,

ΠY (t, ω) = e−r[quΠ
u
Y (t+ 1, ω) + qmΠm

Y (t+ 1, ω) + qdΠ
d
Y (t+ 1, ω)], t = 0, . . . , N − 1. (1.7)

In Task 1.5 below it is asked to compute ΠY (0, ω) with Matlab using the recurrence for-
mula (1.7). To simplify the analysis we assume that the parameters of the trinomial model
are

u = −d, 0 < r < u, pu = pd = p ∈ (0, 1/2). (1.8)

Thus (1.3) becomes

S(t) = S(t− 1)euXt , Xt =


−1 with prob. p
0 with prob. 1− 2p
1 with prob. p

. (1.9)

Moreover, according to Task 1.2, for each value

0 < ω <
eu − er

eu − 1
:= ωmax(r, u),

we have the martingale probability defined by

qu =
er − e−u

eu − e−u
− ω e−u/2

eu/2 + e−u/2
, qm = ω, qd =

eu − er

eu − e−u
− ω eu/2

eu/2 + e−u/2
. (1.10)

Now let 0 = t0 < t1 < · · · < tN = T be a uniform partition of the interval [0, T ] with size
ti − ti−1 = h. Define S(0) = S0 and

S(ti) = S(ti−1)euXi , i = 1, . . . , N, (1.11)

where the random variables X1, . . . , XN are given by (1.9). The instantaneous variance of
the stock is defined, as for the binomial model, by

σ2 =
1

h
Varp[logS(ti)− logS(ti−1)] =

2

h
pu2. (1.12)

Having chosen u = −d, the instantaneous mean of log return is zero. The interest rate on

each period becomes rh and, according to (1.12), u =
√

h
2p
σ. It is easy to see that

ωmax

(
rh,

√
h

2p
σ
)
→ 1, as h→ 0+.
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Hence provided h is sufficiently small we can assume that 0 ≤ ω . 1. Moreover the recurrence
formula (1.7) becomes ΠY (tN , ω) = Y , and

ΠY (ti, ω) = e−rh[quΠ
u
Y (ti+1, ω) + qmΠm

Y (ti+1, ω) + qdΠ
d
Y (ti+1, ω)], i = 0, . . . , N − 1. (1.13)

Task 1.5 (Matlab). Part I. Write a Matlab function that computes the trinomial price
at time t = 0 of the European call option with strike K and maturity T when ω ∈ (0, 1)
is fixed. Show numerically that the result depends on the physical probability p. Plot the
curves ω → ΠY (0, ω) for different values of p and show numerically that the binomial and
the trinomial price converge to the same value as N →∞ (namely, the Black-Scholes price)
only for a specific value ω = ω(p). For this value of ω, study the speed of convergence to
the Black-Scholes price as N → ∞ for different values of p ∈ (0, 1/2) and show that the
trinomial model converges to the Black-Scholes price faster than the binomial model.

Part II. Verify whether it is possible to use the parameter ω to replicate the market value
of call options on S&P 500 with fixed maturity and different strikes, without changing the
volatility parameter σ. How would you interpret this result? TIPS: use the 20days historical
volatility of S&P 500 (easy to find on the Internet) for the value of σ and set r = 0. The op-
tion chain of S&P 500 can be found e.g. by googling “S&P 500 option chain Yahoo finance”.
Choose only options nearly at the money, say the first 10 options out of the money and the
first 10 options in the money.
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Chapter 2

A project on forward and futures
contracts

The purpose of this project is to model the evolution of the forward and future price of an
asset. We begin by discussing in some details the properties of forward and futures contracts.

2.1 Forward and Futures

Forward contracts

A forward contract with delivery price K and maturity (or delivery) time T on an asset
U is a European type financial derivative stipulated by two parties in which one promises to
the other to sell (and possibly deliver) the asset U at time T in exchange for the cash K.
As opposed to option contracts, both parties in a forward contract are obliged to fulfill their
part of the agreement. In particular, as they both have the same right/obligation, neither
of the two parties has to pay a premium to the other when the contract is stipulated, that is
to say, forward contracts are free; in fact, the terminology used for forward contracts is “to
enter a forward contract” and not “to buy/sell a forward contract”. The party who must
sell the asset at maturity is said to hold the short position, while the party who must buy
the asset is said to hold the long position on the forward contract, although this terminology
refers more precisely to the position on the underlying asset. Hence the pay-off for a long
position in a forward contract on the asset U is

Ylong = (ΠU(T )−K),

while for the holder of the short position the pay-off is

Yshort = (K − ΠU(T )).
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Forward contracts are traded OTC and most commonly on commodities or market indexes,
such as currency exchange rates, interest rates and volatilities. In the case that the underlying
asset is an index, forward contracts are also called swaps (e.g., currency swaps, interest rate
swaps, volatility swaps, etc.).

One purpose of forward contracts is to share risks. Irrespective of the movement of the
underlying asset in the market, its price at time T for the holders of the forward contract
will be K. The delivery price agreed by the two parties in a forward contract is also called
the forward price of the asset. More precisely, the T -forward price ForU(t, T ) of an asset
U at time t < T is the strike price of a forward contract on U stipulated at time t and with
maturity T , while the current, actual price ΠU(t) of the asset is called the spot price. Note
that the forward price ForU(t, T ) is unlikely to be a good estimation for the price of the asset
at time T , since the consensus on this value is limited to the participants of the forward
contract and different parties may agree to different delivery prices. The delivery price of
futures contracts on the asset, which we define in the next section, gives a better and more
commonly accepted estimation for the future value of an asset.

Theorem 2.1. Suppose that the market {ΠU(t), B(t)}t=0,...,N is complete. Show that the
arbitrage-free forward price of the asset U for delivery at time T is given by

ForU(t, T ) =
ΠU(t)

B(t, T )
, (2.1)

where B(t, T ) is the risk-neutral price at time t of the ZCB with face value 1 and expiring
at time T .

Task 2.1. Prove the theorem. HINT: You need the put-call parity.

Task 2.2. Compute the forward price of the asset at all times t = 0, 1, 2, 3 in the example
of market at the end of Section 0.4.

Futures

Futures are standardized forward contracts, i.e., rather than being OTC, they are negotiated
in regularized markets. Specifically, a futures market is a market in which the object of
trading are futures contracts. Unlike forward contracts, all futures contracts in a futures
market are subject to the same regulation, and so in particular all contracts on the same
asset with the same time of maturity T have the same delivery price. The T-future price
FutU(t, T ) of the asset U at time t ≤ T is defined as the delivery price at time t ≤ T in
the futures contract on the asset U with maturity T . Futures markets have been existing
for more than 300 years and nowadays the most important ones are the Chicago Mercantile
Exchange (CME), the New York Mercantile Exchange (NYMEX), the Chicago Board of
Trade (CBOT) and the International Exchange Group (ICE).

In a futures market, anyone (after a proper authorization) can stipulate a futures contract.
More precisely, holding a position in a futures contract in the futures market consists in the
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Figure 2.1: Futures price of corn on May 12, 2014 (dashed line) and on May 13, 2014
(continuous line) for different delivery times
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Figure 2.2: Futures price of natural gas on May 13, 2014 for different delivery times
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agreement to receive as a cash flow the change in the future price of the underlying asset
during the time in which the position is held. The cash flow may be positive or negative.
In a long position the cash flow is positive when the future price goes up and it is negative
when the future price goes down. Moreover, in order to alleviate the risk of insolvency,
the cash flow is distributed in time through the mechanism of the margin account. For
example, assume that at t = 0 we open a long position in a futures contract expiring at time
T . At the same time, we need to open a margin account which contains a certain amount of
cash (usually, 10 % of the current value of the T -future price for each contract opened). At
t = 1 day, the amount FutU(1, T ) − FutU(0, T ) will be added to the account, if it positive,
or withdrawn, if it is negative. The position can be closed at any time t < T (multiple of
days), in which case the total amount of cash flown in the margin account is

(FutU(t, T )− FutU(t− 1, T )) + (FutU(t− 1, T )− FutU(t− 2, T ))+

· · ·+ (FutU(1, T )− FutU(0, T )) = (FutU(t, T )− FutU(0, T )).

If a long position is held up to the time of maturity, then the holder of the long position
should buy the underlying asset. However futures contracts are often cash settled and not
physically settled, which means that the delivery of the underlying asset does not occur,
and the equivalent value in cash is paid instead.

Our next purpose is to introduce the definition of arbitrage-free future price of an asset. Our
strategy is to show is that any reasonable definition should satisfy 3 standard conditions and
then show that these conditions define uniquely the future price as a stochastic process.

For simplicity we argue under the assumption that the underlying asset U and the money
market make up a complete market of the form (42) with S(t) = ΠU(t) and T = N . As
the generalized random walk {Mt}t=0,...,N contains all the information about the state of the
market, we are naturally led to impose the following first condition on the future price.

Assumption 1. The future price process {FutU(t, T )}t=0,...,T=N is measurable with respect
to {Mt}t=0,...,N .

For the next assumption we need to derive a recurrence formula for the value of portfolio
processes invested in a futures contract and in the money market (similar to the formula (31)
for the value of self-financing portfolios invested in the stock and the risk-free asset). Consider
a portfolio process that, at time t < T , consists of h(t) shares of the futures contract expiring
at time T and ht+1(t) shares of the ZCB with pay-off 1 maturing at time t+ 1. As the ZCB
has very short time left to maturity, then ht(t+1) is our position on the money market (recall
that the money market consists of short term loan assets). We assume that the portfolio
process is predictable from {Mt}t=0,...,N . As futures contracts have zero value, the value of
the portfolio at time t is simply the money market account:

V (t) = ht+1(t)B(t, t+ 1) =
ht+1(t)

1 +R(t)
.

At time t + 1 the owner of the portfolio will receive the pay-off of the ZCB and the change
in value of the future price (multiplied by the number of shares). Hence at time t + 1 the
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portfolio generates the cash flow

C(t+ 1) = ht+1(t) + h(t)(FutU(t+ 1, T )− FutU(t, T ))

= V (t)(1 +R(t)) + h(t)(FutU(t+ 1, T )− FutU(t, T )).

In a portfolio invested in futures and ZCB’s this cash should be immediately re-invested in
the money market (this is the only possibility, as changing position on the futures contract
costs nothing). Hence C(t+ 1) = ht+2(t+ 1)B(t+ 1, t+ 2) = V (t+ 1). It follows that

h(t)(FutU(t+ 1, T )− FutU(t, T )) = V (t+ 1)− (1 +R(t))V (t) = V (t+ 1)− D(t)

D(t+ 1)
V (t)

= D(t+ 1)−1[D(t+ 1)V (t+ 1)−D(t)V (t)].

Thus the value of any portfolio process invested in the futures contract and the money market
satisfies

h(t)D(t+ 1)(FutU(t+ 1, T )− FutU(t, T )) = V ∗(t+ 1)− V ∗(t), (2.2)

where V ∗(t) = D(t)V (t) is the discounted (at time t = 0) portfolio value. Now, by the
arbitrage-free principle, this portfolio should not be an arbitrage. We have seen that this
condition can be achieved by imposing that the discounted value of the portfolio processes
is a martingale (see the proof of Theorem (0.6)). This holds in particular if

Ẽ[V ∗(t+ 1)|M0, . . . ,Mt] = V ∗(t),

for all t = 0, . . . , T −1. Hence, taking the conditional expectation of both sides of (2.2) with
respect to M0, . . . ,Mt, we obtain

h(t)D(t+1)Ẽ[FutU(t+1, T )−FutU(t, T )|M0, . . . ,Mt] = Ẽ[V ∗(t+1)−V ∗(t)|M0, . . . ,Mt] = 0,

where we used that h(t) and D(t + 1) are measurable with respect to M0, . . . ,Mt and thus
can be taken out from the conditional expectation. By Assumption 1 we have

Ẽ[FutU(t+ 1, T )− FutU(t, T )|M0, . . . ,Mt] = Ẽ[FutU(t+ 1, T )|M0, . . . ,Mt]− FutU(t, T ).

Hence the market is free of arbitrages if we assume the following.

Assumption 2. The future price satisfies

Ẽ[FutU(t+ 1, T )|M0, . . . ,Mt] = FutU(t, T ), t = 0, . . . , T − 1.

The last natural assumption is that the future price at maturity t = T should coincide with
the spot price Π(T ) of the asset, i.e.,

Assumption 3. FutU(T, T ) = Π(T ).

Theorem 2.2. There is only one stochastic process {FutU(t, T )}t=0,...,T that satisfies As-
sumptions 1-3, namely

FutU(t, T ) = Ẽ[Π(T )|M0, . . . ,Mt]. (2.3)

Task 2.3. Prove the theorem.

Task 2.4. Compute the futures price of the asset at all times t = 0, 1, 2, 3 in the example of
market given at the end of Section 0.4.
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2.2 Computation of the futures price with Matlab

The purpose of this section is to compute numerically the future price at time t = 0 of an asset
in the market (42) with the risk-free rate given by the Ho-Lee model (45). To this purpose we
first have to make a choice for the physical probability. We assume that in the real world the
transition probabilities (41) are constant and given by pt ≡ 1/2. This implies in particular
that {Mt}t=0,...,N is a standard symmetric random walk, and thus that the asset price is
binomially distributed, in the physical probability1. Now, let {0 = t0 < t1 < · · · < tN = T}
be a uniform partition of the interval [0, T ] with size h = ti − ti−1 and assume u = −d for
simplicity. The mean of log-return of the underlying asset is therefore zero and

u =
√
hσ, (2.4)

where σ is the volatility of the underlying asset, see (39) (with α = 0 and p = 1/2). The
risk-free rate in the time interval [ti−1, ti] is now given by hR(i), where R(i) follows the
Ho-Lee model R(i) = a(i) + b(i)Mi, i = 0, . . . , N − 1, see (45). The risk-neutral transition
probability in the interval [ti−1, ti] now takes the form

qi(k) =
1 + h(a(i− 1) + b(i− 1)k)− e−u

eu − e−u
, k = −i+ 1,−i+ 3, . . . i− 1,

see (48) (with the substitution (a, b, d) → (ha, hb,−u)). For simplicity we work with the
functions a(k), b(k) given by (50), hence

q1(0) =
1 + a0h− e−u

eu − e−u
, qi(k) =

1 + h(a0 + b0k
i−1

)− e−u

eu − e−u
,

see (52). This choice is admissible provided a0, b0, u satisfy

a0h > b0h− 1, e−u < 1 + h(a0 − b0), eu > 1 + h(a0 + b0),

see (51). It is straightforward to verify that these inequalities hold when h is sufficiently

small. By Theorem 2.2 the future price at time t = 0 of the asset is FutU(0, T ) = Ẽ[Π(T )].
Hence, using Theorem 0.3, we have

FutU(0, T ) = Ẽ[ΠU(T )] =
∑

x∈{−1,1}N
P̃(x)ΠU(T, x) (2.5)

where
ΠU(T, x) = ΠU(0) exp ((x1 + · · ·+ xN)u)

is the asset price at time T along the path x ∈ {−1, 1}N and P̃(x) is the risk-neutral
probability of realization of the path x, which is computed according to (23) (with pt ≡ qt).

1In the applications of the model, this assumption affects the calibration of the parameters. The assumed
distribution of the asset price in the physical probability must be properly tested using historical data.
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Now, while it is not hard to implement the formula (2.5) with Matlab, it is clear that this
is possible only for a relatively small number of steps (up to, say, N ≈ 20), for one needs to
create all 2N elements of the set {−1, 1}N in order to compute the sum in the right hand
side of (2.5). Dealing with a large number of steps is possible by using the discrete version
of the crude Monte Carlo method presented in Section (0.7). More precisely, letting O be a
set of M randomly chosen paths of {Mt}t=0,...,N , we approximate the value of FutU(0, T ) by

FutU(0, T ) ≈ F =
2N

M

∑
x∈O

P̃(x)ΠU(T, x), (2.6)

that is to say, we restrict the sum in (2.5) to the paths in the set O and multiply further
by the factor 2N/M , which is the total number of paths divided by the number of sample
paths. In order to measure the accuracy of this approximation, we begin by repeating the
above calculation n times (using every time a different set of M sample paths) to produce
the approximations F (1), . . . , F (n) for the future price of the asset and pick, as our best
estimate of its exact value, the sample average

F =
1

n

n∑
i=1

F (i).

To measure how reliable is the approximation F , we compute the so called standard error
of the mean

Err =
s√
n
, where s =

√√√√ 1

n− 1

n∑
i=1

(F (i)− F )2

is the standard deviation of the sample F (1), . . . , F (n).

Task 2.5 (Matlab). Part I. Write a Matlab code that computes the crude Monte Carlo
approximation F of the future price as explained above. Show in two pictures how F and Err
depend on the number of paths using, say, n = 50 trials.

Part II. Plot the Future price curve T → FutU(0, T ). Show how this curve depends on the
volatility parameters b0 and σ and explain your findings.

Remark 2.1. The implementation of the algorithm in the previous exercise is quite de-
manding from a computer power point of view. Start with a relatively small number of steps,
say 1000, and see how far you can push this number without making the calculation too long
(1000000 should be within reach of last generation computers). Moreover the results are
more precise when low volatilities b0, σ are used (why?).
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Chapter 3

A project on the Asian option

The risk-neutral pricing formula for European call and put options, and for other simple
standard European derivatives, reduces to a simple expression involving the standard normal
distribution, see (78) for the case of European calls. For Asian options, and other path-
dependent options, this reduction is not possible, and the application of numerical methods
to valuate these derivatives becomes essential. The Monte Carlo numerical method is the
most popular among practitioners. This project deals with applications of the Monte Carlo
method to compute the risk-neutral value of Asian options.

The Asian option

The Asian call/put option in the time-continuum case is defined as the non-standard Euro-
pean derivative with pay-off

Y call =

(
1

T

∫ T

0

S(t) dt−K
)

+

, Y put =

(
K − 1

T

∫ T

0

S(t) dt

)
+

,

where K > 0 is the strike price of the option. The Black-Scholes price at time t = 0 of these
options is given by

ΠAC(0) = e−rTEq[Y call], ΠAP(0) = e−rTEq[Y put].

Task 3.1. Derive the following put-call parity identity:

ΠAC(0)− ΠAP(0) = e−rT
(
erT − 1

rT
S0 −K

)
. (3.1)

Task 3.2. Let C0 denote the Black-Scholes price at time t = 0 of the standard European call
option with strike K and maturity T . Prove the inequality

ΠAC(0) ≤ 1− e−rT

rT
C0, (3.2)
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for the Asian option on the same stock and with the same strike and maturity of the European
one. HINT: You need the so called Jensen’s inequality for integrals:

φ
( 1

b− a

∫ b

a

f(x) dx
)
≤ 1

b− a

∫ b

a

φ(f(x)) dx,

for all real-valued convex functions φ. You also need to remember that the value of the
European call increases with maturity.

Remark 3.1. Since the function x → (1 − e−x)/x is bounded by one for x ≥ 0, the
inequality (3.2) implies that for r ≥ 0 the Asian call is cheaper than the European one.

Task 3.3. The Asian call with geometric average is the non-standard European derivative
with pay-off

Q =
(
e

1
T

∫ T
0 logS(t) dt −K

)
+
. (3.3)

Show that the Black-Scholes price at time t = 0 of this derivative is given by

Π
(G)
AC (0) = e−rT (eqTS0Φ(d1)−KΦ(d2)) (3.4a)

where

q =
1

2
(r − σ2

6
), d2 = d1 − σ

√
T

3
, d1 =

log S0

K
+ 1

2
(r + σ2

6
)T

σ
√
T/3

.

Derive also the anlogous formula for the Asin put with geometric average and the correspond-
ing put-call parity. HINT: You need to apply Theorem 0.11.

Monte Carlo valuation of the Asian option

Letting 0 = t0 < t1 < · · · < tN = T be a partition of the interval [0, T ] with size ti− ti−1 = h.
We approximate the pay-off of the Asian option on the given partition as

Y =

(
1

T

∫ T

0

S(t) dt−K
)

+

≈

(
1

N

N∑
i=1

S(ti)−K

)
+

.

Task 3.4 (Matlab). Part I. Write a Matlab code that computes the Black-Scholes price at
time t = 0 and the confidence interval of the Asian option (call and put) using the crude
Monte Carlo method. Write also a code which applies the control variate Monte Carlo method
using the pay-off of the Asian option with geometric mean as control variate. Compare the
new method with the crude Monte Carlo method and show that the control variate technique
improves the performance of the computation. Use the put-call parity to verify the accuracy
of your numerical findings.

Part II. Use the control variate Monte Carlo method to study numerically how the price of
the Asian call and put depend on the parameters of the option. Plot the curves λ→ ΠAC(0),
where λ is any of the parameters σ, r,K, T, S0. Show in each plot the analogous curve for
the standard European call and use your results to discuss the main differences between the
European call and the Asian call options.
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Chapter 4

A project on coupon bonds

Coupon bonds are debt instruments issued by national governments as a way to borrow
money and fund their activities. Given the long maturity of coupon bonds (which can reach
up to 30 or more years), the valuation of these contracts must take into account the time
fluctuations of the risk-free rate. Once a stochastic model for the risk-free rate is prescribed,
the valuation of coupon bonds can be carried out using the so called “classical approach”,
which is based on the risk-neutral pricing formula. The main purpose of this project is to
numerically compute the yield curve of coupon bonds implied by a particular example of
stochastic risk-free rate model.

4.1 Zero-coupon and coupon bonds

A zero-coupon bond (ZCB) with face (or nominal) value K and maturity T > 0 is a
contract that promises to pay to its owner the amountK at time T in the future. Zero-coupon
bonds, and the related coupon bonds described below, are issued by national governments
and private companies as a way to borrow money and fund their activities. Without loss
of generality we assume from now on that K = 1, as owning a ZCB with face value K is
clearly equivalent to own K shares of a ZCB with face value 1. Moreover in the following
we assume that all ZCB’s are issued by one given institution, so that all bonds differ merely
by their maturities.

After being originally issued in the so-called primary market, the ZCB becomes a tradable
asset in the secondary bond market. It is therefore natural to model the value at time
t of the ZCB maturing at time T > t as a random variable, which we denote by B(t, T ).
Hence {B(t, T )}t∈[0,T ] is a stochastic process. We assume throughout the discussion that
the institution issuing the bond bears no risk of default, i.e., B(t, T ) > 0, for all t ∈ [0, T ].
Clearly B(T, T ) = 1 and, under normal market conditions, B(t, T ) < 1, for t < T , i.e., ZCB’s
are risk-free assets ensuring a positive return. However exceptions are possible; for instance
national bonds in Sweden with maturity shorter than 5 years yield currently (2017) a negative
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return. A ZCB market is a market that consists of ZCB’s with different maturities. Our
main goal is to introduce models for the price of ZCB’s observed in the market. For modeling
purposes we assume that there is a ZCB in the market maturing at each time T ∈ [0, S],
where S is the maturity of the latest expiring ZCB in the market (e.g., S ≈ 30 years). Note
that this assumption is quite far from reality, one reason being that bonds with maturity
larger than, say, 2 years will most likely pay coupons.

Interest rates and yield of ZCB’s

The difference in value of ZCB’s with different maturities is expressed through the implied
forward rate of the bond. To define this concept, suppose that at the present time t we open
a portfolio that consists of −1 share of a ZCB with maturity t < T and B(t, T )/B(t, T + δ)
shares of a ZCB expiring at time T + δ. This investment has zero value and entails that we
pay 1 at time T and receive B(t, T )/B(t, T + δ) at time T + δ. Hence our investment at
the present time t is equivalent to an investment in the future time interval [T, T + δ] with
(annualized) return given by

Fδ(t, T ) =
1

δ
(B(t, T )/B(t, T + δ)− 1) =

B(t, T )−B(t, T + δ)

δB(t, T + δ)
. (4.1)

The quantity Fδ(t, T ) is also called discretely compounded forward rate in the interval
[T, T+δ] locked at time t (or forward LIBOR, as it is commonly applied to LIBOR interest
rate contracts). The name is intended to emphasize that the investment return in the future
interval [T, T + δ] is locked at the present time t ≤ T , that is to say, we know today which
interest rate has to be charged to borrow in the future time interval [T, T + δ] (if a different
rate were locked today, then an arbitrage opportunity would arise). When δ → 0+ we obtain
the continuously compounded T -forward rate

f(t, T ) = lim
δ→0+

1

δ

B(t, T )−B(t, T + δ)

B(t, T + δ)
= −∂T logB(t, T ), (4.2)

which is the rate locked at time t to borrow at time T for an “infinitesimal” period of time.
In the following we shall consider only continuously compounded rates.

The curve T → f(t, T ) is called forward rate curve of the ZCB market. The knowledge
of the forward rate curve determines the price B(t, T ) of all ZCB’s in the market through
the formula

B(t, T ) = exp

(
−
∫ T

t

f(t, s) ds

)
, 0 ≤ t ≤ T ≤ S, (4.3)

which follows easily by integrating (4.2).

The quantity

r(t) = f(t, t), t ∈ [0, S] (4.4)
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is called the (continuously compounded) spot rate of the ZCB market at time t and
represents the interest rate locked at time t to borrow instantaneously at time t (i.e., on the
spot).

The spot rate can be used to define the discount process:

d(t) = exp

(
−
∫ t

0

r(s) ds

)
(continuously compounded). (4.5)

If t is the present time and X(τ) is the value of an asset at some given future time τ > t,
then the quantity

d(τ)

d(t)
X(τ) = exp

(
−
∫ τ

t

r(s) ds

)
X(τ)

is called the present (at time t) discounted value of the asset and represents the future (at
time τ) value of the asset relative to the purchasing value of money at that time.

The (continuously compounded) yield (to maturity) y(t, T ) at time t of the ZCB with
maturity T is the constant forward rate which entails the value B(t, T ) of the ZCB. Hence
the yield y(t, T ) of a ZCB is obtained by replacing f(t, v) = y(t, T ) in (4.3), i.e.,

B(t, T ) = e−y(t,T )(T−t), that is, y(t, T ) = − logB(t, T )

T − t
. (4.6)

To put it in other words: Selling a ZCB for the price B(t, T ) at time t (i.e., borrowing B(t, T )
at time t) is equivalent to lock the constant forward rate y(t, T ) until maturity. Note also
that the first equation in (4.6) expresses B(t, T ) as the discounted value at time t of the
future payment = 1 at maturity assuming that the spot rate is constant and equal to y(t, T )
in the interval [t, T ].

Coupon bonds

Let 0 < t1 < t2 < · · · < tM = T be a partition of the interval [0, T ]. A coupon bond with
maturity T , face value 1 and coupons c1, c2, . . . , cM ∈ (0, 1) is a contract that promises to pay
the amount ck at time tk and the amount 1+cM at maturity T = tM . We set c = (c1, . . . , cM)
and denote by Bc(t, T ) the value at time t of the bond paying the coupons c1, . . . , cM and
maturing at time T . Now, let t ∈ [0, T ] and k(t) ∈ {1, . . . ,M} be the smallest index such
that tk(t) > t, that is to say, tk(t) is the first time after t at which a coupon is paid. Holding
the coupon bond at time t is clearly equivalent to holding a portfolio containing ck(t) shares
of the ZCB expiring at time tk(t), ck(t)+1 shares of the ZCB expiring at time tk(t)+1, and so
on, hence

Bc(t, T ) =
M−1∑
j=k(t)

cjB(t, tj) + (1 + cM)B(t, T ), (4.7)

the sum being zero when k(t) = M .

89



The yield of a coupon bond is defined implicitly by the equation

Bc(t, T ) =
M−1∑
j=k(t)

cje
−yc(t,T )(tj−t) + (1 + cM)e−yc(t,T )(T−t) (4.8)

and so the yield of the coupon bond is the constant spot rate used to discount the total future
payments of the coupon bond.

Remark 4.1. Most commonly the coupons are equal. Letting cj = c, for all j = 1, . . . ,M ,
the formula (4.8) simplifies to

Bc(t, T ) = c
M−1∑
j=k(t)

e−yc(t,T )(tj−t) + (1 + c)e−yc(t,T )(T−t). (4.9)

To compute the yield of a coupon bond with value Bc(t, T ), one has to invert (4.9). For
instance, assume that T = M years and that the coupons are paid annually, that is t1 = 1,
t2 = 2, . . . , tM = M . Then x = e−yc(0,T ) solves p(x) = 0, where p is the M -order polynomial
given by

p(x) = c1x+ c2x
2 + · · ·+ (1 + cM)xM −Bc(0, T ). (4.10)

The roots of this polynomial can easily be computed numerically, e.g., with the command
roots[p] in matlab, see Task 4.4 below.

Yield curve

(Zero) coupon bonds are listed in the market in terms of their yield rather than in terms of
their price. The curve T → yc(t, T ) is called the yield curve of the ZCB market. Figure 4.1
shows an example of yield curve for governmental Swedish bonds.

Task 4.1. Yield curves observed in the market are classified based on their shape (e.g.,
steep, flat, inverted, etc.). Find out on the Internet what the different shapes mean from an
economical point of view and write a short text about this.

4.2 The classical approach to ZCB’s pricing

In this section we describe the so-called classical approach to ZCB’s pricing. This approach
is based on the risk-neutral pricing formula.

Definition 4.1. Let {r(t)}t≥0 be a stochastic process modeling the spot interest rate of the
ZCB market, where we assume that r(0) = r0 is a deterministic constant. Then

B(0, T ) = E[d(T )] = E[e−
∫ T
0 r(s) ds] (4.11)

is called the risk-neutral price of the ZCB at time t = 0.
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Figure 4.1: Yield curve for Swedish bonds. Note that the yield is negative for maturities
shorter than 5 years. Bonds with maturity larger than 2 years have coupon and thus their
yield is computed using (4.8) (instead of (4.6)).

Hence the value at time t = 0 of the ZCB is the expected value of the discounted future pay-
ment = 1 of the ZCB. Note that in a purely ZCB market, one cannot define a martingale, or
risk-neutral, probability, hence the expectation in (4.11) is taken in the physical probability.
Equivalently, in the classical approach to ZCB’s pricing, the physical probability is assumed
to be risk-neutral.

In the following two tasks it is asked to compute the exact value of B(0, T ) when the spot
rate is given by two simple models, namely the Ho-Lee model and the Vasicek model.

Task 4.2. In the Ho-Lee model, the risk-free rate is assumed to satisfy

r(t) = r(0) + θ(t) + σW (t), θ(0) = 0, (4.12)

where {W (t)}t≥0 is a Brownian motion, σ > 0 is constant and θ(t) is a deterministic function
of time. Derive the initial price B(0, T ) of the ZCB with face value 1 and maturity T > 0
and the forward rate f(0, T ) implied by the Ho-Lee model. Draw (e.g., with Maltab) the
graph T → f(0, T ) of the forward curve at time t = 0 (experiment for different functions θ).
HINT: You need Theorem 0.11.

91



Task 4.3. In the Vasicek model, the risk-free rate is assumed to satisfy

r(t) = r(0)e−at + b(1− e−at) + σW (t)− aσ
∫ t

0

ea(s−t)W (s) ds, (4.13)

where {W (t)}t≥0 is a Brownian motion and a > 0, b ∈ R, σ > 0 are constants. Note that, by
Theorem 0.11, r(t) is normally distributed. Show that the initial price of the ZCB with face
value 1 and maturity T > 0 is given by

B(0, T ) = e−r(0)A(T )+C(T ), (4.14a)

where

A(T ) =
1

a
(1− e−aT ), (4.14b)

C(T ) =

(
b− σ2

2a2

)
(A(T )− T )− σ2

4a
A(T )2. (4.14c)

HINT: You need Theorem 0.11.

Remark 4.2. By using the notation in Remark 0.17, we can write the definition of r(t) in
the Vasicek model as

r(t) = r(0) + b(eat − 1) + σ

∫ t

0

easdW (s),

which is the form of r(t) most used in the literature.

Task 4.4 (Matlab). Part I. Write the code for a Matlab function

yield(B, Coupon, CouponDates)

that computes the continuously compounded yield to maturity of a coupon bond. Here, B is the
current (i.e., at time t = t0 = 0) price of the bond, Coupon ∈ (0, 1) is the (constant) coupon,
CouponDates is the vector (t1, . . . , tM = T ) containing the dates at which the coupon is paid,
the last component of which is the maturity of the bond. Remember that time in finance is
measured in fraction of years and 1 year = 252 days (unless otherwise stated in the contract).

Part II. Let {r(t)}t≥0 be given by the Vasicek model with parameters a, b, σ. Apply the code
in Part I to perform a parameter sensitivity analysis of the yield curve. Can you reproduce
all the typical shapes found in Exercise 4.1?
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Chapter 5

A project on multi-asset options

Multi-asset options are financial derivatives on several underlying assets. In this project we
consider standard European derivatives on two stocks, i.e., European style derivatives with
pay-off of the form Y = g(S1(T ), S2(T )), where S1(t), S2(t) are the prices of the underlying
stocks at time t ∈ [0, T ] and T > 0 is the time of maturity of the derivative. After the
Black-Scholes theory for single stock options is generalized to the two dimensional case, the
Monte Carlo method is applied to compute the price of maximum call options on two stocks.

5.1 Examples of options on two stocks

Given K1, K2 > 0, a two assets correlation call option with maturity T is the European
derivative with pay-off

Y =

{
(S2(T )−K2)+ if S1(T ) > K1

0 otherwise
.

A maximum call option on two stocks with maturity T is the European style derivative
with pay-off Y = max((S1(T )−K1)+, (S2(T )−K2)+), and similarly one defines the minimum
call option on two stocks and the analogous put options.

The European derivative with maturity T and pay-off

Y = (S1(T )− S2(T ))+

is called a spread option (or exchange asset option). The European derivative with
maturity T and pay-off

Y =

(
S1(T )

S2(T )
−K

)
+

is called a relative outperformance option.
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A quanto option is a call or put option on a stock in which the pay-off is paid in a different
currency than the one in which the stock is traded. Thus, letting Ξ(t) be the exchange rate
of the two currencies at time t, the pay-off of a quanto call option with maturity T is

Y = Ξ(T )(S(T )−K)+.

Note that in this example the second asset is not at stock but a market index (the exchange
rate Ξ(t)).

The list of examples could go on, but we stop here. New types of multi-asset options are
created frequently. All multi-asset options are traded OTC.

5.2 Black-Scholes price of 2-assets standard European

derivatives

In the Black-Scholes theory of two-dimensional markets it is assumed that the stocks prices
are given by a 2-dimensional geometric Brownian motion, namely:

S1(t) = S1(0)eα1t+σ11W1(t)+σ12W2(t), (5.1a)

S2(t) = S2(0)eα2t+σ21W1(t)+σ22W2(t), (5.1b)

where {W1(t)}t≥0, {W2(t)}t≥0 are independent Brownian motions in the physical probability
P and α1, α2, σ11, σ12, σ21, σ22 are real constants. We assume that the volatility matrix
σ = (σij) is invertible. Letting

W (t) = (W1(t),W2(t)), σ1 = (σ11, σ12), σ2 = (σ21, σ22),

we can rewrite the 2-dimensional geometric Brownian motion in the more concise form

Sj(t) = Sj(0)eαjt+σj ·W (t),

where · denotes the standard scalar product of vectors. We start by deriving the joint density
of the stocks prices.

Theorem 5.1. The random variables logS1(t), logS2(t) are jointly normally distributed with
mean m = (logS1(0) + α1t, logS2(0) + α2t) and covariant matrix C = tσσT . In particular,
the random variables S1(t), S2(t) have the joint density

fS1(t),S2(t)(x, y) =
e
− 1

2t

(
log x

S(0) − α1t log y
S(0) − α2t

)
(σσT )−1

log x
S(0) − α1t

log y
S(0) − α2t


txy
√

(2π)2 det(σσT )
. (5.2)
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Proof. We have

logS1(t) = log S1(0) + α1t+ σ11W1(t) + σ12W2(t),

logS2(t) = log S2(0) + α2t+ σ21W1(t) + σ22W2(t),

hence the first statement of the theorem follows by Theorem 0.10. The joint density of
S1(t), S2(t) is computed using that

FS1(t),S2(t)(x, y) = P(S1(t) ≤ x, S2(t) ≤ y)

= P(logS1(t) ≤ log x, logS2(t) ≤ log y) = FlogS1(t),logS2(t)(log x, log y),

hence

fS1(t),S2(t)(x, y) = ∂x∂yFS1(t),S2(t)(x, y) = ∂x∂y[FlogS1(t),logS2(t)(log x, log y)]

= (xy)−1flogS1(t),logS2(t)(log x, log y),

which, using the joint normal density of logS1(t) and logS2(t), gives (5.2).

The 2-dimensional geometric Brownian motion is often given in a different but equivalent
(in distribution) form, as shown in the next Task.

Task 5.1. Show that the process (5.1) is equivalent, in distribution, to the process

S̃1(t) = S1(0)eα1t+|σ1|W1(t) (5.3a)

S̃2(t) = S2(0)eα2t+|σ2|(ρW1(t)+
√

1−ρ2W2(t)), (5.3b)

where |σi| =
√
σ2
i1 + σ2

i2 is the Euclidean norm of the vector σi and

ρ =
σ1 · σ2

|σ1||σ2|
∈ [−1, 1] (5.4)

is the cosine of the angle between σ1, σ2.

Remark 5.1. It can be shown the historical variances of the two stocks are unbiased
estimators for |σ1|2, |σ2|2, while the historical correlation of log-returns of the two stocks is
an unbiased estimator for ρ.

Now, exactly as in the one-dimensional case discussed in Section 0.6, it is possible to define a
risk-neutral (or martingale) probability measure with respect to which the discounted value
of both stocks are martingales. We seek this probability measure in the class of Girsanov
probabilities Pθ introduced in Theorem 0.15, where θ = (θ1, θ2) ∈ R2. The problem is solved
in the following two theorems, which are the 2-dimensional generalizations of Theorem 0.18
and Theorem 0.19 respectively.

95



Theorem 5.2. Let µ = (α1 − r + 1
2
|σ1|2, α2 − r + 1

2
|σ1|2). The discounted values S∗1(t) =

e−rtS1(t) and S∗2(t) = e−rtS2(t) of the stocks have constant expectation in the Girsanov
probability Pθ if and only if θ = q = (q1, q2), where q is the (unique) solution of the linear
system σq = µ.

Theorem 5.3. The stochastic processes {S∗1(t)}t≥0 and {S∗2(t)}t≥0 are martingales in the
probability measure Pθ if and only if θ = q = (q1, q2).

Task 5.2. Prove Theorem 5.2.

The probability measure Pq is the martingale (or risk-neutral) probability of the 2-dimensional
Black-Scholes market.

Task 5.3. Prove that in the probability Pq the stocks prices are given by the following 2-
dimensional geometric Brownian motion

S1(t) = S1(0)e(r− |σ1|
2

2
)t+σ1·W (q)(t), (5.5a)

S2(t) = S2(0)e(r− |σ2|
2

2
)t+σ2·W (q)(t), (5.5b)

where W (q)(t) = (W
(q)
1 (t),W

(q)
2 (t)) = (W1(t)+q1t,W2(t)+q2t) and {W (q)

1 (t)}t≥0, {W (q)
1 (t)}t≥0

are Pq-independent Brownian motions. What is the equivalent (in distribution) expression
for the process (5.3)?

Denoting by Eq the expectation in the probability Pq, the Black-Scholes price at time t = 0
of the 2-assets European derivative with pay-off Y at maturity T is given by the risk-neutral
pricing formula

ΠY (0) = e−rTEq[Y ]. (5.6)

Task 5.4. Show that the risk-neutral price (5.6) of the relative outperformance option is
given by

ΠY (0) = e(r̂−r)T
(
S1(0)

S2(0)
Φ(d+)−Ke−r̂TΦ(d−)

)
(5.7)

where

d± =
log S1(t)

KS2(t)
+ (r̂ ± |σ1−σ2|

2

2
)τ

|σ1 − σ2|
√
τ

, r̂ =
|σ1 − σ2|2

2
+

(
|σ2|2

2
− |σ1|2

2

)
.

HINT: You need Theorem 0.10.

Task 5.5 (Matlab). Write a Matlab function

MaximumCall(K1, K2, T, s1, s2, sigma1, sigma2, rho, r, N, n)

that applies the crude Monte Carlo method to compute the initial price (at time t = 0) of
the maximum call option with strikes K1, K2 and expiring at time T . Here s1, s2 are the
initial prices of the stocks, sigma1, sigma2 are the volatilities of the stocks and rho is their
correlation (in the notation (5.3), sigma1= |σ1|). Moreover N is the number of points in a
uniform partition of [0, T ] and n is the number of paths used for the Monte Carlo simulation.
Plot the price and the confidence interval as a function of the number of paths. Plot also the
price as function of the parameters K1, K2, s1, s2, σ1, σ2 and ρ. Discuss your findings.
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Integral form of the Black-Scholes price for general standard Euro-
pean derivatives on two stocks

In the case of standard European derivatives the risk-neutral pricing formula ΠY (0) =
e−rTE[g(S1(T ), S2(T )] can be written in a closed integral form, as shown in the following
analog of Theorem 0.20.

Theorem 5.4. The Black-Scholes price at time t = 0 of the 2-stocks option with pay-off
Y = g(S1(T ), S2(T )) is given by

ΠY (0) = v0(S1(0), S2(0)), (5.8a)

where the pricing function v0 is given by

v0(x, y) =

∫
R2

g

(
xe(r− |σ1|

2

2
)T+
√
Tξ, ye(r− |σ2|

2

2
)T+
√
Tη

) exp

(
−1

2

(
ξ η

)
(σσT )−1

(
ξ
η

))
2π
√

det(σσT )
dξ dη.

(5.8b)

Sketch of the proof. The proof follows by using the joint density of S1(T ), S2(T ) in the risk-
neutral probability to compute Eq[Y ]. Namely, according to (5.5), the stock prices in the
risk-neutral probability are given by a geometric Brownian motion with mean of log-returns
αj = r − 1

2
|σ2
j |, j = 1, 2. Replacing these values of α1, α2 into (5.2) gives the joint density

f̃S1(t),S2(t)(x, y) of the stock prices in the risk-neutral probability, from which we can compute
ΠY (0) = e−rTEq[g(S1(T ), S2(T )] as

ΠY (0) = e−rT
∫
R2

g(x, y)f̃S1(T ),S2(T )(x, y) dx dy.

After a proper change of variable, the previous expression transforms into (5.8).

The Black-Scholes price at time t > 0 of the 2-assets European derivative with pay-off
Y = g(S1(T ), S2(T )) is given by a formula similar to the one in Theorem 5.4, namely

ΠY (t) = v(t, S1(t), S2(t)),

where the pricing function v is given by

v(t, x, y) =

∫
R2

g

(
xe(r− |σ1|

2

2
)τ+
√
τξ, ye(r− |σ2|

2

2
)τ+
√
τη

) exp

(
−1

2

(
ξ η

)
(σσT )−1

(
ξ
η

))
2π
√

det(σσT )
dξ dη.
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