MVE172 Basic Stochastic Processes and Financial Applications Written exam Monday 3 April 2023 8.30-11.30 AM

Teacher and telephone jour: Patrik Albin 0317723512.
Aids: Either two A4-sheets (4 pages) of hand-written notes (xerox-copies and/or computer print-outs are not allowed) or Beta (but not both these aids).

Grades: 8, 12 and 16 points for grades 3,4 and 5 , respectively.
Motivations: All answers/solutions must be motivated. Good Luck!

Task 1. Calculate $\mathbf{P}\{X(1)=1 \mid X(0)=0, X(2)=2\}$ for a Poisson process $\{X(t)\}_{t \geq 0}$.
(5 points)
Task 2. Calculate $\mathbf{P}\{X(1) \geq 1 \mid X(0)=0\}$ for a zero-mean WSS Gaussian process $\{X(t)\}_{t \in \mathbb{R}}$ with autocorrelation function $R_{X}(\tau)=\mathrm{e}^{-|\tau|}$. [HINT: Use either that $X(t)-$ $R_{X}(t-s) X(s)$ and $X(s)$ are uncorrelated or that $(X(s), X(t))$ has $\operatorname{PDF} f_{X(s), X(t)}(x, y)$ $\left.=\frac{1}{2 \pi \sqrt{1-R_{X}(t-s)^{2}}} \exp \left\{-\frac{x^{2}+y^{2}-2 R_{X}(t-s) x y}{2\left(1-R_{X}(t-s)^{2}\right)}\right\}.\right] \quad$ (5 points)

Task 3. Find the probability mass function for the time T it takes for a discrete time Markov chain with state space $\{0,1,2\}$, starting at state 0 and with all transition probabilities equal $1 / 3$ to reach the state 2 . (5 points)

Task 4. Find a discrete time process $\left\{X_{n}\right\}_{n=0}^{+\infty}$ that is neither a martingale, a submartingale or a supermartingale wrt. $F_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$. (5 points)

MVE172 Solutions to exam 3 April 2023

Task 1. $\mathbf{P}\{X(1)=1 \mid X(0)=0, X(2)=2\}=\frac{\mathbf{P}\{X(0)=0, X(1)=1, X(2)=2\}}{\mathbf{P}\{X(0)=0, X(2)=2\}}$
$=\frac{\mathbf{P}\{X(0)=0, X(1)-X(0)=1, X(2)-X(1)=1\}}{\mathbf{P}\{X(0)=0, X(2)-X(0)=2\}}=\frac{\mathbf{P}\{X(0)=0\} \mathbf{P}\{X(1)-X(0)=1\} \mathbf{P}\{X(2)-X(1)=1\}}{\mathbf{P}\{X(0)=0\} \mathbf{P}\{X(2)-X(0)=2\}}$
$=\frac{\mathbf{P}\{X(0)=0\} \mathbf{P}\{X(1)=1\} \mathbf{P}\{X(1)=1\}}{\mathbf{P}\{X(0)=0\} \mathbf{P}\{X(2)=2\}}=\frac{1 \cdot\left((1 \cdot \lambda)^{1} \mathrm{e}^{-1 \cdot \lambda} /(1!)\right)^{2}}{1 \cdot\left((2 \cdot \lambda)^{2} \mathrm{e}^{-2 \cdot \lambda} /(2!)\right)}=\frac{1}{2}$.
Task 2. First solution: As $X(1)-\mathrm{e}^{-1} X(0)$ and $X(0)$ are uncorrelated we have
$\mathbf{P}\{X(1) \geq 1 \mid X(0)=0\}=\mathbf{P}\left\{X(1)-\mathrm{e}^{-1} X(0) \geq 1-\mathrm{e}^{-1} \cdot 0 \mid X(0)=0\right\}=\mathbf{P}\left\{X(1)-\mathrm{e}^{-1} X(0)\right.$
$\geq 1\}=1-\Phi\left(\frac{1-0}{\sqrt{\operatorname{Var}\left\{X(1)-\mathrm{e}^{-1} X(0)\right\}}}\right)=1-\Phi\left(\frac{1}{\sqrt{1-\mathrm{e}^{-2}}}\right)$.
Second solution: $\mathbf{P}\{X(1) \geq 1 \mid X(0)=0\}=\int_{1}^{\infty} f_{X(1) \mid X(0)}(y \mid 0) d y=\int_{1}^{\infty} \frac{f_{X(0), X(1)}(0, y)}{f_{X(0)}(0)} d y$ $=\int_{1}^{\infty} \frac{1}{2 \pi \sqrt{1-R_{X}(1)^{2}}} \exp \left\{-\frac{y^{2}}{2\left(1-R_{X}(1)^{2}\right)}\right\} / \frac{1}{\sqrt{2 \pi}} d y=\mathbf{P}\left\{\mathrm{N}\left(0,1-R_{X}(1)^{2}\right) \geq 1\right\}=$ as above.

Task 3. When the chain is in state 0 or 1 the probability that next state is still 0 or 1 is $2 / 3$ while the probability that next state is 2 is $1 / 3$. Hence the probability mass function is that of a waiting time distribution with $p=1 / 3$, i.e., $\mathbf{P}\{T=k\}=(1 / 3)(2 / 3)^{k-1}$.

Task 4. Let $X_{0}=0$ and $X_{n}=\sum_{k=1}^{n} Y_{k}$ for $n \geq 1$, where $\left\{Y_{k}\right\}_{k=1}^{+\infty}$ are independent random variables with $\mathbf{E}\left\{Y_{k}\right\}=1$ for k odd and $\mathbf{E}\left\{Y_{k}\right\}=-1$ for k even. Then $\mathbf{E}\left\{X_{k} \mid F_{k-1}\right\}=X_{k-1}+\mathbf{E}\left\{X_{k}\right\}$ which is bigger than X_{k-1} for k odd and smaller than X_{k-1} for k even.

