MVE172 Basic Stochastic Processes and Financial Applications Written exam Tuesday 22 August 2023 2-5 PM

Teacher and telephone jour: Patrik Albin 0317723512.
Aids: Either two A4-sheets (4 pages) of hand-written notes (xerox-copies and/or computer print-outs are not allowed) or Beta (but not both these aids). Grades: 8, 12 and 16 points for grades 3,4 and 5 , respectively. Motivations: All answers/solutions must be motivated. Good Luck!

Task 1. Let $X(t)$ and $Y(t), t \geq 0$, be independent Poission processes with intensity (/rate) 1. Find an expression for $\mathbf{P}\{X(1) \geq Y(2)\}$ that can be readily calculated numerically using, for example, Mathematica or Matlab. (5 points)

Task 2. Let $\{X(t)\}_{t \geq 0}$ be a zero-mean random process with autocorrelation function $R_{X}(s, t)=\min (s, t)$. Calculate $\mathbf{E}\left\{Y^{2}\right\}$ for $Y=X(0)+\int_{0}^{1} X(s) d s$. (5 points)

Task 3. Consider a Markov chain $\left\{X_{n}\right\}_{n=0}^{+\infty}$ with state space $\{0,1,2\}$, initial probabil -ity distribution $\pi(0)=(1 / 21 / 20)=(1 / 2,1 / 2,0)$ and transition probability matrix P. Express the probability $\mathbf{P}\{X(1)=2 \mid X(2)=1\}$ in terms of the elements of P.

Task 4. Let X_{1}, X_{2}, \ldots be independent random variables such that each X_{i} can take only two values $1 / 2$ and $3 / 2$ with probabilities $p \in[0,1]$ and $1-p$, respectively. For which values of p is $M_{n}=\prod_{i=1}^{n} X_{i}=X_{1} \cdot \ldots \cdot X_{n}$ for $n \geq 1, M_{0}=1$, a submartingale?

MVE172 Solutions to exam 22 August 2023

Task 1. $\mathbf{P}\{X(1) \geq Y(2)\}=\sum_{k=0}^{\infty} \mathbf{P}\{X(1)=k\}\left(\sum_{\ell=0}^{k} \mathbf{P}\{Y(2)=\ell\}\right)=\sum_{k=0}^{\infty} \sum_{\ell=0}^{k} \frac{1^{k}}{k!}$ $\mathrm{e}^{-1} \frac{2^{\ell}}{\ell!} \mathrm{e}^{-2}$.

Task 2. As $\mathbf{E}\left\{X(0)^{2}\right\}=R_{X}(0,0)=\min (0,0)=0$ we have $X(0)=0$ giving that $Y=\int_{0}^{1} X(s) d s$. Therefore we conclude that $\mathbf{E}\left\{Y^{2}\right\}=\mathbf{E}\left\{\left(\int_{0}^{1} X(s) d s\right)\left(\int_{0}^{1} X(t) d t\right)\right\}=$ $\int_{0}^{1} \int_{0}^{1} \mathbf{E}\{X(s) X(t)\} d s d t=\int_{0}^{1} \int_{0}^{1} \min (s, t) d s d t=2 \int_{t=0}^{t=1}\left(\int_{s=0}^{s=t} s d s\right) d t=1 / 3$.
Task 3. $\mathbf{P}\{X(1)=2 \mid X(2)=1\}=\frac{\mathbf{P}\{X(1)=2, X(2)=1\}}{\mathbf{P}\{X(2)=1\}}=\frac{\mathbf{P}\{X(2)=1 \mid X(1)=2\} \mathbf{P}\{X(1)=2\}}{\mathbf{P}\{X(2)=1\}}=$ $\frac{P_{21}\left((1 / 2) \cdot P_{02}+(1 / 2) \cdot P_{12}\right)}{(1 / 2) \cdot\left(P^{2}\right)_{01}+(1 / 2) \cdot\left(P^{2}\right)_{11}}$.

Task 4. With $F_{n}=\sigma\left(M_{0}, \ldots, M_{n}\right)$ we have $\mathbf{E}\left\{M_{n+1} \mid F_{n}\right\}=\mathbf{E}\left\{X_{n+1} M_{n} \mid F_{n}\right\}=$ $M_{n} \mathbf{E}\left\{X_{n+1}\right\}=M_{n}((1 / 2) \cdot p+(3 / 2) \cdot(1-p))=((3 / 2)-p) M_{n}$ which is greater than or equal to M_{n} making M_{n} a submartingale if and only if $p \leq 1 / 2$.

