The Brachistochrone Problem: An application of Calculus of Variations

Daniel Erkensten

November 22, 2022

- Bernoulli (1696): "Given two points A and B in a vertical plane, what is the curve traced out by a point acted on only by gravity, which starts at A and reaches B in the shortest time." \Rightarrow Brachistochrone ${ }^{1}$ problem

[^0]The Brachistochrone - Mythbusters experiment

Calculus of variations: crash course

- Problems such as the Brachistochrone problem can be solved using calculus of variations (Euler 1700s)
- Idea: finding the function $y(x, \alpha)$ which makes the integral I stationary:

$$
\begin{equation*}
I(\alpha)=\int_{A}^{B} F\left(y(x, \alpha), y^{\prime}, x\right) d x,\left.\frac{d I}{d \alpha}\right|_{\alpha=\alpha_{0}=0}=0 \tag{1}
\end{equation*}
$$

- F is a functional (\sim function of functions), $y(x, \alpha)=y(x, \alpha=0)+\alpha f(x), f(x)$ being a smooth deformation with $f(A)=f(B)=0$

Calculus of variations: crash course cont.

- From the stationary condition $\frac{d 1}{d \alpha}=0$ the Euler equation follows (or the Beltrami identity if F not expl. dependent on x):

$$
\begin{equation*}
\frac{\partial F}{\partial y}-\frac{d}{d x} \frac{\partial F}{\partial y^{\prime}}=0 \text { (Euler) }, F-y^{\prime} \frac{\partial F}{\partial y^{\prime}}=C \text { (Beltrami id.) } \tag{2}
\end{equation*}
$$

- From math to physics: What can $I(\alpha)$ correspond to in the real world?
- From the stationary condition $\frac{d 1}{d \alpha}=0$ the Euler equation follows (or the Beltrami identity if F not expl. dependent on x):

$$
\begin{equation*}
\frac{\partial F}{\partial y}-\frac{d}{d x} \frac{\partial F}{\partial y^{\prime}}=0 \text { (Euler) }, F-y^{\prime} \frac{\partial F}{\partial y^{\prime}}=C \text { (Beltrami id.) } \tag{2}
\end{equation*}
$$

- From math to physics: What can $I(\alpha)$ correspond to in the real world?
- Energy, area, distance...., TIME!

Calculus of variations: applied to BP

- Galileo:

$$
\begin{equation*}
t=\int \frac{d s}{v}, d s=\sqrt{d x^{2}+d y^{2}} \tag{3}
\end{equation*}
$$

- How to compute the speed v ?

Calculus of variations: applied to BP

- Galileo:

$$
\begin{equation*}
t=\int \frac{d s}{v}, d s=\sqrt{d x^{2}+d y^{2}} \tag{3}
\end{equation*}
$$

- How to compute the speed v ? Conservation of energy!

$$
\begin{equation*}
E_{\mathrm{pot}}=E_{\mathrm{kin}}, \Leftrightarrow m g y=\frac{m v^{2}}{2} \Rightarrow v=\sqrt{2 g y} \tag{4}
\end{equation*}
$$

Calculus of variations: applied to BP

- Combine the results on the previous slide:

$$
\begin{equation*}
t=\int F\left(y, y^{\prime}, x\right) d x, F\left(y, y^{\prime}, x\right)=\sqrt{\frac{1+y^{\prime 2}}{2 g y}} \tag{5}
\end{equation*}
$$

Now: find $y(x)$ such that t is minimized

Calculus of variations: applied to BP cont.

- Recall the Beltrami identity (since F not expl. dep. on x !):

$$
\begin{equation*}
F-y^{\prime} \frac{\partial F}{\partial y^{\prime}}=C, F\left(y, y^{\prime}\right)=\sqrt{\frac{1+y^{\prime 2}}{2 g y}} \tag{6}
\end{equation*}
$$

- Plug in F and perform the derivatives! Result can be rewritten according to (exercise...)

$$
\begin{equation*}
\frac{d y}{d x}=\sqrt{\frac{K-y}{y}}, K=\frac{1}{2 g C^{2}} \Leftrightarrow \int d x=\int d y \sqrt{\frac{y}{K-y}} \tag{7}
\end{equation*}
$$

[^1]
Calculus of variations: applied to BP cont.

- Recall the Beltrami identity (since F not expl. dep. on x !):

$$
\begin{equation*}
F-y^{\prime} \frac{\partial F}{\partial y^{\prime}}=C, F\left(y, y^{\prime}\right)=\sqrt{\frac{1+y^{\prime 2}}{2 g y}} \tag{6}
\end{equation*}
$$

- Plug in F and perform the derivatives! Result can be rewritten according to (exercise...)

$$
\begin{equation*}
\frac{d y}{d x}=\sqrt{\frac{K-y}{y}}, K=\frac{1}{2 g C^{2}} \Leftrightarrow \int d x=\int d y \sqrt{\frac{y}{K-y}} \tag{7}
\end{equation*}
$$

- Solve the y-integral by the substitution $y=K \sin ^{2}(\theta / 2)$
- The solution is described by an inverted cycloid: ${ }^{2}$

$$
\begin{equation*}
x=\frac{K}{2}(\theta-\sin (\theta))+D, y=\frac{K}{2}(1-\cos (\theta)) \tag{8}
\end{equation*}
$$

[^2]
Calculus of variations: applied to BP cont.

- Many other COOL applications of CoV: optimal shape of soap bubble, hanging rope, prove that the shortest distance between two points is a line, fencing the largest possible area (Didos problem) etc etc...

HOW TO SOLVE A PHYSICS PROBLEM:

Additional details (derivation of Euler equation)

- Goal: make I(α) stationary

$$
\begin{equation*}
\frac{d I}{d \alpha}=\int_{A}^{B}\left(\frac{\partial F}{\partial y} \frac{\partial y}{\partial \alpha}+\frac{\partial F}{\partial y^{\prime}} \frac{\partial y^{\prime}}{\partial \alpha}\right) d x=0 \tag{9}
\end{equation*}
$$

- Introduce $\delta y=y(x, \alpha)-y(x, 0)=\alpha f(x)$ for some deformation $f(x)$ with $f(A)=f(B)=0 . y(x, 0)$ is assumed to solve the optimization problem.

$$
\begin{equation*}
\frac{\partial y}{\partial \alpha}=f(x), \frac{\partial y^{\prime}}{\partial \alpha}=\frac{\partial f}{\partial x} . \tag{10}
\end{equation*}
$$

- Plug (10) into (9) and perform integration by parts to the second term (boundary terms vanish!)

$$
\begin{equation*}
\frac{d l}{d \alpha}=\int_{A}^{B}\left(\frac{\partial F}{\partial y}-\frac{d}{d x} \frac{\partial F}{\partial y^{\prime}}\right) f(x) d x=0 \tag{11}
\end{equation*}
$$

- $f(x)$ arbitrary \Rightarrow Euler equation!

[^0]: ${ }^{1}$ from Ancient Greek: brákhistos khrónos, i.e. 'shortest time'

[^1]: ${ }^{2}$ The curve traced out by a point on the rim of a wheel as the wheel rotates.

[^2]: ${ }^{2}$ The curve traced out by a point on the rim of a wheel as the wheel rotates.

