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Calculus of variations: The Brachistochrone Problem

Bernoulli (1696): "Given two points A and B in a vertical plane, what is the curve traced
out by a point acted on only by gravity, which starts at A and reaches B in the shortest
time."⇒ Brachistochrone1 problem

1from Ancient Greek: brákhistos khrónos, i.e. ’shortest time’
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The Brachistochrone - Mythbusters experiment
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Calculus of variations: crash course

Problems such as the Brachistochrone problem can be solved using calculus of
variations (Euler 1700s)
Idea: finding the function y(x , α) which makes the integral I stationary:

I(α) =
∫ B

A
F (y(x , α), y ′, x)dx ,

dI
dα
|α=α0=0 = 0 (1)

F is a functional (∼ function of functions), y(x , α) = y(x , α = 0) + αf (x), f (x) being a
smooth deformation with f (A) = f (B) = 0
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Calculus of variations: crash course cont.

From the stationary condition dI
dα = 0 the Euler equation follows (or the Beltrami identity

if F not expl. dependent on x):

∂F
∂y
− d

dx
∂F
∂y ′ = 0 (Euler) ,F − y ′ ∂F

∂y ′ = C (Beltrami id.) (2)

From math to physics: What can I(α) correspond to in the real world?

Energy, area, distance...., TIME!

5 / 11



Calculus of variations: crash course cont.

From the stationary condition dI
dα = 0 the Euler equation follows (or the Beltrami identity

if F not expl. dependent on x):

∂F
∂y
− d

dx
∂F
∂y ′ = 0 (Euler) ,F − y ′ ∂F

∂y ′ = C (Beltrami id.) (2)

From math to physics: What can I(α) correspond to in the real world?
Energy, area, distance...., TIME!

5 / 11



Calculus of variations: applied to BP

Galileo:
t =

∫
ds
v
,ds =

√
dx2 + dy2 (3)

How to compute the speed v?

Conservation of energy!

Epot = Ekin ,⇔ mgy =
mv2

2
⇒ v =

√
2gy (4)
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Calculus of variations: applied to BP

Combine the results on the previous slide:

t =
∫

F (y , y ′, x)dx ,F (y , y ′, x) =

√
1 + y ′2

2gy
(5)

Now: find y(x) such that t is minimized
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Calculus of variations: applied to BP cont.

Recall the Beltrami identity (since F not expl. dep. on x !):

F − y ′ ∂F
∂y ′ = C ,F (y , y ′) =

√
1 + y ′2

2gy
(6)

Plug in F and perform the derivatives! Result can be rewritten according to (exercise...)

dy
dx

=

√
K − y

y
,K =

1
2gC2 ⇔

∫
dx =

∫
dy

√
y

K − y
(7)

Solve the y -integral by the substitution y = K sin2(θ/2)
The solution is described by an inverted cycloid:2

x =
K
2
(θ − sin(θ)) + D , y =

K
2
(1− cos(θ)) (8)

2The curve traced out by a point on the rim of a wheel as the wheel rotates.
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Calculus of variations: applied to BP cont.

Many other COOL applications of CoV: optimal shape of soap bubble, hanging rope,
prove that the shortest distance between two points is a line, fencing the largest
possible area (Didos problem) etc etc...
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Additional details (derivation of Euler equation)

Goal: make I(α) stationary

dI
dα

=

∫ B

A
(
∂F
∂y

∂y
∂α

+
∂F
∂y ′

∂y ′

∂α
)dx = 0 (9)

Introduce δy = y(x , α)− y(x ,0) = αf (x) for some deformation f (x) with
f (A) = f (B) = 0. y(x ,0) is assumed to solve the optimization problem.

∂y
∂α

= f (x) ,
∂y ′

∂α
=
∂f
∂x

. (10)

Plug (10) into (9) and perform integration by parts to the second term (boundary terms
vanish!)

dI
dα

=

∫ B

A
(
∂F
∂y
− d

dx
∂F
∂y ′ )f (x)dx = 0 (11)

f (x) arbitrary⇒ Euler equation!
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