
Appendix E

Group Theory
In this appendix we give an introduction to group theory as it is applied in physics. We will be covering
the basic definition of a group, and provide some additional definitions. After this we give a brief
introduction to representation theory, and then discuss a special class of groups called Lie groups. A Lie
group is a group that is also a differential manifold, which is of fundamental importance in physics. To
provide a more thorough understanding and some physical context, we also provide a cursory introduction
to group manifolds and spin representations. The chapter is then concluded with explicit calculations of
Lie algebras for use throughout the thesis.

Definition E.0.1. A group is defined as a set of unique elements (G) which together with an operation
(∗) fulfills the following:

Closure : if a and b ∈ G, then a ∗ b ∈ G.

Associativity : ∀a, b and c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c).

Unit element : there exists an object e ∈ G such that a ∗ e = e ∗ a = a.

Inverse element : for each a ∈ G, there is an element b ∈ G such that a ∗ b = b ∗ a = e.

The most common example of an easy to understand group is the set of all integers combined with the
operation of addition. The sum of two integers is always an integer, and we already know that addition
is associative. The unit element of the group is 0, since adding it to any integer will yield that integer
as a result. Finally, the inverse element of any integer is just the same integer with opposite sign.

In physics we use the group structure to express certain symmetries of a system, such as invariance
under a rotation, or Lorentz invariance. It can be shown that, with an appropriate operator, these
symmetries can be expressed as groups and represented as matrices. Group theory can then be used to
find the equations of motions for a system purely by using the symmetries that the theory possesses.

To make use of group theory there are some tools we need to understand and use, so we continue
with a few more definitions:

Definition E.0.2. A group is called abelian if the elements commute with regards to the group oper-
ation (∗), that is:

∀a,b ∈ G : a ∗ b = b ∗ a .

This is important because the difference between what mathematical tools are applicable to abelian
and non-abelian groups is very big. A prime example of a non-abelian group is the set of all invertible
n×nmatrices combined with the matrix multiplication operator. The difference is also readily observable
in sections 2.2 and 3.

Definition E.0.3. If G and H are two groups with the same group operator (∗), H is said to be a
subgroup of G if

a ∈ H ⇒ a ∈ G

There are always two trivial subgroups; the unit element and the group itself.

Definition E.0.4. A map ψ : G 7→ H is a homomorphism if

gi ∗ gj = gk ,

and
ψ(gi) ∗ ψ(gj) = ψ(gk) .

where gi, gj , gk ∈ G, ψ(gi) ∗ ψ(gj), ψ(gk) ∈ H. If ψ is also bijective it is an isomorphism, which we
denote with G ∼= H.
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E.1 Representation theory
The most simple, but perhaps most instructive example of a continuous group is the group of all rotations
in two dimensions. While we can write down a general element of the group of all rotations in two
dimensions as g(θ), where θ is a continuous parameter, we would like to construct a more explicit
representation. To do this we associate each element of the group with a matrix, taking the matrix
multiplication as the group operator. If we fix a coordinate system we may express g(θ) with the
rotations matrix R(θ) defined as

R(θ) =
[

cos θ sin θ
− sin θ cos θ

]
.

The idea of associating group elements with matrices is formally known as representation theory. In
mathematics group theory and representation theory can certainly be considered different subjects but
in physics a distinction is seldom made.

Now that we have introduced the idea of representing group elements with matrices we are ready to
continue. While it was easy to write down the rotation matrix in two dimensions we would certainly
like to be able to rotate things in more than one plane. Since our intuition as humans is for the most
part only good in two to three dimensions we would like to find a general way of constructing rotation
matrices in arbitrary dimension. Thus, we must ask ourselves what property defines a rotation. The
common answer is that a rotation is a transformation that preserves the length of vectors. Thus we want
to find all matrices that leaves the quantity xTx invariant. We consider an arbitrary transformation with
a matrix M

xTx 7→ (Mx)T (Mx) = xTMTMx .

Now, if this quantity is to be equal to xTx we must have MTM = 1. We call matrices that satisfies
this condition orthogonal. But we are not done, if we take the determinant of the defining equation of
a orthogonal matrix we find that det(M) = ±1. Matrices which switch parity are orthogonal matrices
with determinant −1. To exclude these we also demand that a rotation matrix M satisfies det(M) = 1.
These two demands are usually summarized by saying that a rotation is an element of the group SO(n)
where S stands for special, meaning that we have a determinant of one. O is for orthogonal and n is the
dimension of the matrix and, obviously, of the space.

E.2 Lie Groups
In physics we are mostly interested in continuous groups. A simple example apart from rotations are
the group of real numbers. Of special interest are the continuous groups known as Lie groups (named
after the brilliant Norwegian mathematician Sophus Lie (1842-1899)), as they are differential manifolds
meaning they describe some continuous geometry. This allows us to perform certain operations on the
group manifolds, namely integration and differentiation. Lie groups are defined as follows:

Definition E.2.1. A Lie group (G) is a finite-dimensional differential manifold with an associated
smooth multiplication map:

(gj ,gi) ∈ G×G→ gigj ∈ G

and a smooth inverse map
g ∈ G→ g−1 ∈ G

that satisfy the group axioms in E.0.1.

When we construct the covariant derivative in section 2.1 there is a necessity for a theory of the
first spatial derivative of the transformations corresponding to the Lie groups. We refer to these terms
as being Lie algebra-valued. The theory regarding these objects is that of Lie algebra. The Lie algebra
can be seen as a minimal representation of a group using group elements infinitely close to the identity
element as generators that can span the entire group.
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Definition E.2.2. A Lie algebra g is a vector space which has a bilinear mapping [.,.] : g× g 7→ g such
that:

For all X,Y ∈ g
[X,Y ] = −[Y,X] .

The Jacobi identity,
[X,[Y,Z]] + [Y,[Z,X]] + [Z,[X,Y ]] = 0 .

The objects X,Y, Z of this definition are usually denoted Ti where i is some index, and are called
generators. The brackets([.,.]) are generally referred to as Lie brackets.

Now, how can we construct our original rotation matrix from these generators? To proceed we will
have to use a idea, courtesy of Sophus Lie. Lie proposed that instead of performing the whole transfor-
mation at once, we can split it into many small transformations. Let U(φ) be a rotation transformation
and, as discussed before, also a matrix. For a small transformation we may expand our transformation
around the identity as

U(δφ) = 1+ δφT .

Now we can express a full transformation U(φ) by first dividing up the parameter in N pieces, φ = Nδφ.
To compensate we of course have to perform the transformation N times. We can now take the limit as
N tends towards infinity of N infinitesimal transformations performed in succession:

U(φ) = lim
N→∞

(1 + φT

N
)N .

The infinity-limit on N defines the exponential, so we have

U(φ) = eφT .

We see that to construct a full transformation we only need to find the generator and then exponentiate
it. It is important that the exponential of a matrix should be interpreted as an infinite series according
to

eX =
∞∑
i=0

Xn

n! .

Let us return to our rotation matrix and find it again using the method described above. First we need
to find the generator T . By expanding the defining equation for SO(2) infinitesimal we find

(1+ iδφT )T (1+ iδφT ) = 1 =⇒ TT + T = 0 ,

if the equation is to hold to first order. Now, there are not many 2 × 2 matrices which satisfy this
condition. Truth is, down to a scale factor, c, there is only one:

T = c ·
[

0 1
−1 0

]
.

Now, using the exponential equation we find

eφcT =
∑ (φcT )n

n! =
[∑

n=1
(−c)(n+1)(φ)2n

(2n)!
∑ (−c)n+1(φ)2n−1

(2n−1)!

−
∑ (−c)n+1(φ)2n−1

(2n−1)!
∑ (−c)n+1(φ)2n

2n!

]
c=1

=
[

cosφ sinφ
− sinφ cosφ

]
,

where we in the last step see that we need to set c = 1 to get the rotation matrix out of our endeavour.
We have managed to retrieve the classical rotation matrix, and now you may wonder for which groups
are these manipulations actually allowed. It turns out that this procedure works for any group whose
elements we may write as U(φ1,φ2,..φn) given that the parameters are continuous and that there exists
U(φ1,φ2,..φn) = 1 for some set of φ. This restriction is the same as saying that the parameters define a
differentiable manifold, as a manifold consisting of a set of orthogonal, continuous parameters is trivially
differentiable.
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Now that we have confirmed that Lie’s claim holds we can do this the other way around! Remembering
that U(φ) = eTφ, differentiating both sides with respect to φ and then letting φ→ 0 we get:

d
dφU(φ) = TU(φ) , (E.1)[

d
dφU(φ)

]
φ=0

= T · U(0) , (E.2)

since U is a transformation around the unit element U(0) is just the identity, giving us an expression for
the generator T in terms of the parametrized representation matrix.

Now we have only discussed groups with one parameter, so we turn our attention to groups with
multiple parameters. For groups with multiple generators we can further develop our understanding of
them by attempting to combine them. We begin with expanding the group operator according to

Ua(δφ) = e(Ta δφa) = 1 + Taδφa + 1
2T

2
a (δφa)2 .

Using this notation we can combine two generators Ta and Tb:

U−1
b U−1

a UbUa = 1 + δφaδφb[Ta,Tb] + ... .

We can choose to ignore higher order terms because we have assumed δφa, δφb to be small. Since the
group is closed [Ta,Tb] must either be a group generator or zero. We see from this that

[Ta, Tb] = fab
cTc , (E.3)

must hold. Tc denotes some arbitrary group generator for the same group as Ta, Tb. The constants,
fab

c are called the structure constants. It can be shown that fabc is antisymmetric in its three indices,
although some care needs to be taken when exchanging raised and lowered indices. The structure constant
provides a representation independent characterization of a Lie group. This is a good time to look again
at the definition of a Lie algebra. The commutator is the bilinear operation in its definition and it fulfills
the Jacobi identity.

Finally, we note that the sum of two elements in the Lie algebra are in the Lie algebra, since the
product of two elements in the Lie group is in the Lie group, and multiplication corresponds to addition
in the exponent.

E.2.1 Killing forms
So far we have introduced the Lie bracket of a Lie algebra so that given two elements in the algebra we
may construct a third one. However, we may ask for another operator that given two group elements
returns a scalar. What we are seeking is thus a generalisation of the scalar product from linear algebra.
Before we define this operator we first introduce a new notation for the Lie bracket with

adx(y) = [x,y] .

The operator adx(y) is called the adjoint action. The reason we introduce this notation is because the
use of Lie brackets may become cumbersome. For example consider the expression

[x[x,[x,[x,y]]]] = adx ◦ adx ◦ adx ◦ adx(y) = ad4
x(y) .

It is clear that the right hand side is a more appropriate notation. We are now ready to give a definition:

Definition E.2.3. Given a finite-dimensional Lie algebra g its Killing form is the symmetric bilinear
form given by the formula

κ(x,y) = tr[adx ◦ ady] .

Remember that in our notation this reads adx ◦adx = [x[y,·]]. The Killing form is therefore a matrix,
given a basis. Of course we shouldn’t be surprised, there is after all a trace in the definition. Now, let us
consider the special case of the adjoint action of a generator. To emphasize we write x = T a. Its action
on another generator is by definition

adTa(T b) = [T a,T b] = fabcT
c ,
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where f is the structure constant. Since all elements of a Lie algebra can be written as a linear combina-
tion of the generators we can use these as a basis. Construct a vector, x, where the a:th entry indicates
the multiplicity of T a. Then we may write down a matrix for the adjoint action as

(adTa)bc = fabc .

Just applying the same idea we find

adTa ◦ adT b = (adTa)cd(adT b)de = facdf
bd
e ,

and we thus reach
tr[adTaadT b ] = tr[facdf bde] = facdf

bd
c ,

where we have summation over c and e.

E.3 An introduction to group manifolds
The properties of the group manifold has some implications for the physics that come from that group.
Because of this it is necessary to be at least somewhat familiar with group manifolds, so we introduce
them here. In general, the group manifold is an isomorphism class of manifolds, rather than some
particular manifold. One way of finding a manifold that is part of this isomorphism class for a matrix
representation of a group is by finding the parameter space of the matrix representation. To build
intuition we will go over a few examples and discuss them afterwards.

The purpose of this section is for the reader to gain some understanding for the group manifold, a
general manifold and the direct product. Examples of direct products relevant throughout this thesis are
SL(2) × SL(2) and SL(3) × SL(3), which are the basis of the theory of Chern-Simons gravity that we
present.

The special unitary group of order 2 can be written on the following parametric form[
a+ ib −c+ id
c+ id a− ib

]
,

with the restriction a2 + b2 +c2 +d2 = 1 coming from the restriction on the determinant. It is easily seen
that the group manifold of SU(2) in this representation is a hypersphere. The hypersphere is isomorphic
to the three dimensional ball by isomorphisms of the form

x = a ,

y = b ,

z = c ,

r2 = 1− d2 .

We see this because all of a,b,c,d are already limited by values between 0 and 1, and we’ve transferred
the equation to one of the form x2 + y2 + z2 = r2 where the radius can be between 0 and 1.

The group SO(1,1) is just the group of all Lorentz tranformations in one direction. The transformation
matrix can be written as [

p s
s p

]
where the orthogonality condition is taken care of by the Minkowski metric. The determinant re-

striction gives us the parameter restriction p2− s2 = 1 which defines the unit hyperbola. The hyperbola
is an obvious example of a non-compact Lie group, as the hyperbola continues off into infinity meaning
there is no well-defined final point. It is also not fully connected, because the allowed values for p are
p ≤ −1, p ≥ 1, leaving a hole in the middle.

As we have seen in E.5.1 rotations in three dimensions can be represented as a multiplication of three
rotations around different axes by some angle. Each of these matrices takes as a parameter an angle,
that can take any real value. What is interesting is that this space is degenerate since two points 2π
apart in the parameter space correspond to the exact same transformation. This means that all points
in the R3 space are identified with a set of points contained within a sphere of radius π, so the group
manifold of SO(3) is actually a sphere with radius π.
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We can choose this sphere to be centered on the origin, so that the range of each of the parameters
is given by θ2 + φ2 + ψ2 ≤ π2. At this point we have almost defined the group manifold of SO(3). To
complete the description we have to note that a rotation by π and −π around some axis is equivalent,
so the points on the boundary of the ball are identified with their antipodal points.

In conclusion, the group manifold of SO(3) is a ball, of radius π in the parameter space of the matrix
representation. The antipodal points of the surface of the ball are connected by an identity, that is, we
identify them as the same point. An important consequence of this is that SO(3) is not simply connected.

On a simply connected manifold any closed curve can be shrunk to a point by a continuous transfor-
mation. If we connect two antipodal points of the ball with some curve, that curve is closed, but cannot
be continuously shrunk to a point since its’ end points have to remain antipodal or the closed curve will
open up. It turns out that if we let a curve run through two adjacent spheres in the parameter space this
curve will in fact be shrinkable to a point. To show this we will provide a simple illustration, restricting
us to the θ − φ axis cross-section of the sphere for graphical simplicity.

Beginning with a straight line from φ = −3π to π, we can continuously deform the line, keeping the
points φ = −3π,−π, π stationary. We can do this until the lines are on the boundary of the sphere as in
stage 2 in the image. We then use the identity to transfer the line at the boundary of the extra sphere
to the primary sphere. We now have a curve that can be trivially closed by continuous deformation, as
is illustrated below

Comparing the manifolds of SO(3) and SU(2) we see that they are very similar, and they also have
the same Lie algebra. This connection is no accident, if two groups have sufficiently similar manifolds
their Lie algebra is the same. This also shows us a clear example of a group property not given by the
Lie algebra, namely simple connectedness.

With this introduction to group manifolds we are ready for another definition:

Definition E.3.1. The direct product, G×H between the groups G,H with operators ∗,· is defined as
follows

Elements in the new group are defined according to the Cartesian product, as (g, h) : g ∈ G, h ∈ H
on these elements we define the group operator (?) according to

(g,h) ? (g′,h′) = (g ∗ g′,h · h′) .

Some obvious consequences of this definition is that the direct product always has the two constituent
groups as subgroups, corresponding to elements of the type g,1 and (1,h). In addition, it is clear that the
Lie algebra of the composite group is g ⊕ h because the subgroups approach the identity independent
of each other. The group manifold of the composite group is the Cartesian product of the constituent
group manifolds. In the examples in fig. E.1 the isomorphism symbol is used instead of equality because
we are only interested in the isomorphism class of a manifold.

Furthermore, the definition of the direct product makes it straightforward to construct a matrix
representation of the composite group. Picking two matrix representations of G and H according to
TG, TH it is easy to see that the block diagonal matrix is in accordance with the definition:[

TG 0
0 TH

]
.

70



Appendix E. Group Theory

Figure E.1: Two different direct products between manifolds. The direct product of a line and a circle
is shown to be a cylinder. The direct product of a circle and a disk embedded in two separate spaces
should normally be embedded in 4-space, but it is isomorphic to the solid torus in three dimensions.

E.4 Spin representation
In this thesis we discuss Yang-Mills theory, which is formulated in terms of a group transformation acting
on an abstract vector field. In section 2.2 the field was a scalar, and in 3.1 it was unspecified. Apart
from the scalar field, classifications include tensor- and spinor fields. In this section we provide a basic
discussion on classifying fundamental fields by their spin j. A similar classification can also be applied
to the symmetry group itself, independent of whether it acts on any fundamental field. In this case, the
group is a spin j representation of the special orthogonal group SO(n,k). For the gauge group itself to
be classified in this manner it must be decomposable into subgroups that are isomorphic to SO(n,k).

The importance of this classification lies in quantum physics, where the spin-statistics theorem re-
stricts the statistics of a quantized field theory. In particular, quantized spinor fields must obey Fermi-
Dirac statistics and quantized scalar and tensor fields must obey Bose-Einstein statistics. That is, a
quantized spinor field obeys the Pauli exclusion principle while scalar and tensor fields do not.

The definitions of scalars, spinors and tensors all specify how they transform under a rotation. For
some arbitrary field, we can find out how it transforms under a rotation by relating the generators of its
gauge group to the generators of the rotation group. For any gauge group, if we can rescale its generators
in a way such that it has the same commutation relations as the special orthogonal group (E.5.1), it
means that the group manifolds of the gauge groups are locally isomorphic. A local isomorphism of the
group manifolds is a local equivalence between the transforms that they perform. If this isomorphism
exists, we can characterize a fundamental field by performing a rotation infinitesimally.

If we denote this angle of rotation as Ω, we can define the spin j of the fundamental field as the
largest j such that

exp
(

2π
j
T

)
= I (E.4)

where T is the generators of the gauge group in question, rescaled to fulfill the commutation relations of
SO(k,n).

As an example of this, we use the isomorphism between the gauge groups SU(2) and SO(3). The
rotation matrix is given, denoting its generators as Tn and the angle of rotation as Ω, by

UΩ = exp (ΩxT1 + ΩyT2 + ΩzT3) .

The Pauli matrices E.5.3, with slight modifications fulfill the same commutation relations, so locally a
rotation can be expressed as

UΩ = exp
(
iΩxσ1

2 + iΩyσ2

2 + iΩzσ3

2

)
= exp

(
i

2

[
Ωz Ωx − iΩy

Ωx + Ωy −Ωz

])

=

cos
(
|Ω|
2

)
+ iΩz 1

|Ω| sin
(
|Ω|
2

)
i(Ωx − iΩy) 1

Ω sin
(
|Ω|
2

)
i(Ωx + iΩy) 1

Ω sin
(
|Ω|
2

)
cos
(
|Ω|
2

)
− iΩz 1

|Ω| sin
(
|Ω|
2

) .
We see that under a rotation Ω by a total of 2π radians the result is

UΩ =
[
−1 0
0 −1

]
,
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and to return to the identity, a rotation by 4π radians is required. From (E.4) we see that the fundamental
field coupled to the gauge group SU(2) has spin 1/2. A fundamental field with a half-integer spin is
called spinor, and SU(2) is referred to as a spinor representation of SO(3). In general, this method
cannot be applied to a completely general gauge group because isomorphies like SU(2) ∼= SO(3) do not
nessecarily exist. In a similar fashion it can be shown that sl(2) ∼= so(1,2) is a spinor representation of
SO(1,2). For the rotation group of arbitrary order and signature, SO(k,n), it’s spinor representation is
called Spin(k,n). In section 6 and onwards we investigate theories that we refer to as spin-2 and spin-3
gravity, respectively. The spin in this refers to the properties of the metric tensor gµν and the metric-like
higher-spin field ψ(µνρ). The metric tensor is a symmetric tensor of rank two. A rotation is given locally
by exp(ΩT ). Acting infinitesimally on gµν , we have that

δgαβ = δΩ(Tµα δνβ + T νβ δ
µ
α)gµν

= 2δΩTµα gµβ

where symmetry was used to exchange α,β and µ, ν in the second term in the parenthesis. Thus, the
rotation generators acting on gµν act as exp(2ΩT ), which just a rotation by an angle of 2Ω. We see that
the spin of the metric tensor must be two. In the same way we have for ψ(µνρ) that

δψαβσ = δΩ(Tµα δ
νρ
βσ + (T νβ δρµσα + (T ρσ δ

µν
αβ)ψµνρ

= 3δΩTµαψµβσ,

and we see that ψ(µνρ) is a spin-3 field.

E.5 Special Lie groups
In this section we will present some of the Lie groups that will be important throughout our work. We
will present their generators, Lie algebra and dimensions. We also note some important Lie algebra
isomorphisms that are used throughout the thesis.

In general we will refer to groups by their abbreviation, followed by brackets containing the dimension
of the group. For example, SO(5) would be the special orthogonal group in five dimensions. If we have
two indices inside the brackets as in SO(m,n) this means that the group describes a geometry with m
time-like dimensions, and n space-like dimensions. The difference between the timelike and space-like
dimensions are what metric they have, which will make the representation of SO(1,2) different from
SO(3) despite them having the same dimension. The generators for SO(1,2) are calculated in E.5.1.
When referring to the Lie algebra of a Lie group we denote the Lie algebra with the abbreviation of the
group in lowercase letters. This is standard convention used in order to avoid confusion when referring
to Lie groups and Lie algebras simultaneously.
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E.5.1 Special orthogonal group, SO(n)
The SO(n) group is the special orthogonal group in n dimensions. Special denotes a determinant of 1,
and orthogonal refers to matrix orthogonality.

SO(2)

One of the most familiar groups in SO(n) is SO(2), which is the group of rotations in R2, represented
by the single operation

U(φ) =
[

cos(φ) sin(φ)
− sin(φ) cos(φ)

]
. (E.5)

To obtain the Lie algebra we apply equation (E.1) to get

T = −[
[
− sin(φ) − cos(φ)
cos(φ) − sin(φ)

]
φ=0

=
[

0 1
−1 0

]
.

Since SO(2) only contains one generator, it has a trivial Lie algebra.

SO(3)

To apply the same method to SO(3) we first need its matrix representation. We can split SO(3) up into
a rotation in each orthogonal 2d plane in 3d space, that is, a rotation in the xy-plane, a rotation in the
yz-plane and a rotation in the xz-plane.

U0(φ) =

1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)

 , U1(φ) =

cos(φ) 0 − sin(φ)
0 1 0

sin(φ) 0 cos(φ)

 , U2(φ) =

 cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 1


(E.6)

Which yield the following generators (once again by applying (E.1)):

T0 =

0 0 0
0 0 1
0 −1 0

 , T1 =

0 0 −1
0 0 0
1 0 0

 , T2 =

 0 1 0
−1 0 0
0 0 0

 . (E.7)

Finally, we find the structure factor by commuting all possible combinations of T0, T1, T2. We will
only show two commutators here, and then write down a general expression for the structure factor.

[T0, T1] = T0T1 − T1T0 =

 0 1 0
−1 0 0
0 0 0

 = T2

[T0, T2] = T0T2 − T2T0 =

 0 0 1
0 0 0
−1 0 0

 = −T1 .

These two commutators show the beginnings of a symmetry for the structure factor, and the general
formula becomes

[Ti, Tj ] = εijkTk . (E.8)

We see that the structure constants fijk = εijk as per the notation in eq (E.3).

SO(1,2)

SO(1,2) is the special orthogonal group with associated metric−1 0 0
0 1 0
0 0 1

 .
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Inutitively, we want to have one length-preserving parametric transformation for every orthogonal
plane we can find in Rn. If a plane consists of one space-like coordinate and one time-like coordinate
then the length preserving transformation is the Lorentz transformation instead of the rotation that we
have seen before.

The regular Lorentz transformation with an inertial system S and a boosted system S′, S′ travelling
with velocity v with respect to S, is defined as follows (in x variable and t variable):

x′ = γ(x− vt) , (E.9)

t′ = γ(t− vx/c2) , (E.10)

where γ is the Lorentz factor, γ = 1√
1−v2/c2

.

If we introduce the hyperbolic parameter θ, also called rapidity, defined as eθ = γ(1 + v/c) we may
rewrite the Lorentz transform [12]. We compute sinh θ and cosh θ for reasons which will become apparent
soon. We do moreover, from now and on, set c = 1 for simplicity:

sinh θ = eθ − e−θ

2 = γ(1 + v)− 1/(γ(1 + v))
2 = γ2(1 + v)2 − 1

2γ(1 + v) = 1 + v − (1− v)
2γ(1− v2) = vγ ,

and
cosh θ = eθ + e−θ

2 = γ(1 + v) + 1/(γ(1 + v))
2 = γ2(1 + v)2 + 1

2γ(1 + v) = 1 + v + (1− v)
2γ(1− v2) = γ .

Now we can express the Lorentz transform on hyperbolic form, yielding:

x′ = x cosh(θ)− t sinh(θ) , (E.11)
t′ = t cosh(θ)− x sinh(θ) . (E.12)

Equation (E.11) is very conveniently dependent on a parameter θ so that we can apply equation (E.1).
The transformation matrices for SO(1,2) are then simply:

U0(θ) =

1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

 , U1(θ) =

 cosh(θ) − sinh(θ) 0
− sinh(θ) cosh(θ) 0

0 0 1

 , U2(θ) =

 cosh(θ) 0 − sinh(θ)
0 1 0

− sinh(θ) 0 cosh(θ)

 .

(E.13)
Inserting into equation (E.1) we get the generators

T0 =

0 0 0
0 0 −1
0 1 0

 , T1 =

 0 −1 0
−1 0 0
0 0 0

 , T2 =

 0 0 −1
0 0 0
−1 0 0

 . (E.14)

We find the structure factor to be fijk = −εkij . To lower the k we need to note that for k = 0 we get
an extra minus sign because the manifold of the group has a Minkowski metric. This we see is the only
difference between the Lie algebra of SO(3) and SO(1,2).

E.5.2 Special linear group, SL(n)
SL(n) is the group of n × n matrices with determinant 1. We will explicitly calculate the Lie algebra
for n = 2,3. To find the Lie algebrae of SL(2) and SL(3) we will use LU-factorization, meaning we split
the the arbitrary square matrix into a lower triangular matrix and an upper triangular matrix. This
operation in reality depends on none of the diagonal elements of the matrix in question being 0, so it is
only valid around the identity. Also, the decomposition actually adds n degrees of freedom, so we must
add another restriction to obtain a unique decomposition. A valid such restriction is the requirement
that the lower triangular matrix must be a unit triangular matrix, that is all of its diagonal elements are
1.
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SL(2)

We write down SL(2) as the product of a lower- and upper triangular matrix right away:

g =
[
1 0
a 1

] [
r b
0 r−1

]
,

where the rs come from the determinant condition. As usual, using (E.1) we obtain the generators:

S0 =
[
1 0
0 −1

]
, S1 =

[
0 1
0 0

]
, S2 =

[
0 0
1 0

]
.

To obtain a simple form of the commutation relations we rescale the generators as

S0 = 1
2

[
1 0
0 −1

]
, S1 = 1√

2

[
0 1
0 0

]
, S2 = 1√

2

[
0 0
1 0

]
.

making the commutation relations

[S0,S1] = S1 , [S2,S0] = S2 , [S1,S2] = S0 .

We can recombine the generators of SL(2) so that its isomorphism to SO(1,2) is readily apparent. We
define a new set of generators as:

T0 = S0 = 1
2

[
1 0
0 −1

]
,

T1 = S1 + S2√
2

= 1
2

[
0 1
1 0

]
,

T2 = S1 − S2√
2

= 1
2

[
0 1
−1 0

]
.

We evaluate the commutators of rising order and then write down the general expression:

[T0,T1] = 1√
2

[S0,S1 + S2]

= S1 − S2√
2

= T2 ,

[T2,T0] = 1√
2

[S1 − S2,S0]

= −S2 + S3√
2

= −T1 ,

[T1,T2] = 1
2 [S1 + S2,S1 − S2] ,

= 1
2 ([S2,S1]− [S1,S2]) = 1

2(−S0 − S0) = −T0 .

Going off of these commutators we can write down the commutation relations as

[Ta,Tb] = εab
cTc ,

where, as usual, the c can be lowered by the Minkowski metric, however in this case the minus sign
is attached to the three. For the Minkowski metric to follow the convention of the rest of this appendix
we switch the names of T0 and T2 so that our final generators are:

T0 = 1
2

[
0 1
−1 0

]
, T1 = 1

2

[
0 1
1 0

]
, T2 = 1

2

[
1 0
0 −1

]
.

and the structure constants are still εabc.
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SL(3)

We will find the Lie algebra of SL(3), and then show how to find a diagonal embedding of SL(2) in the
larger SL(3) gauge group. For ease of finding, we have split off the other possible recombinations of the
SL(3) Lie algebra to their own Appendix, E.5.2. We do not try to show how to find these particular
recombinations, but rather just present their matrices and commutation relations. These recombinations
specify a principal embedding, where the commutation relations between the sl(2) subalgebra and the
five remaining generators are non-trivial.

We write down the LU-decomposition of a three-dimensional matrix with a determinant equal to one:

g =

1 0 0
a 1 0
b c 1

 ,

k−1 d e
0 kr f
0 0 r−1

 .

The generators can easily be read off, as the off-diagonal parameters are entirely free:

Tk =

1 0 0
0 −1 0
0 0 0

 , Tr =

0 0 0
0 −1 0
0 0 1

 ,

Ta =

0 0 0
1 0 0
0 0 0

 , Tb =

0 0 0
0 0 0
1 0 0

 ,

Tc =

0 0 0
0 0 0
0 1 0

 , Td =

0 1 0
0 0 0
0 0 0

 ,

Te =

0 0 1
0 0 0
0 0 0

 , Tf =

0 0 0
0 0 1
0 0 0

 ,

where we number the matrices by the usual reading order, and the subscript indicates from which
parameter the generator was obtained.

Performing a recombination according to:

T0 = −1
2Tk = 1

2

−i 0 0
0 i 0
0 0 0

 ,

T1 = Td + Ta
2 = 1

2

 0 −i 0
−i 0 0
0 0 0

 ,

T2 = Td − Ta
2 = 1

2

0 −i 0
i 0 0
0 0 0

 ,

we see that these three generators T1, T2, T3 obviously satisfy the commutation relations in E.5.2.
Finding the matrices fulfilling the sl(2) commutation relations by replicating the sl(2) algebra in 2 our
of the three indices of sl(3) is called the diagonal embedding. The remaining five generators W1...5 are
just Tk − Tr together with Tb, Tc, Te, Tf . The most important property of this embedding is that the
higher spin generators Wa have trivial commutation relations with the SL(2) generators Tb. Listing a
preliminary set of higher spin generators in a diagonal embedding, we have

W1 =

1 0 0
0 1 0
0 0 −1

 , W2

0 0 0
0 0 0
1 0 0

 , W3 =

0 0 0
0 0 0
0 1 0

 ,

W4 =

0 0 1
0 0 0
0 0 0

 , W5

0 0 0
0 0 1
0 0 0

 .
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Since we do not use this embedding in our thesis, we do not present any commutation relations. It is
likely that the higher spin generators W should be recombined to obtain simple commutation relations
before they are employed in an actual gauge theory. The purpose of showing these generators is to
illustrate the difference between a diagonal and a principal embedding, such as the recombinations of
SL(3) that we will state now.

Conventions for Lie algebras in spin-3

Here we state the explicit matrix form of the different generators used in higher spin calculations. We
follow the conventions of [32]. We also give the Lie algebra and commutators. The standard sl(3) algebra
is generated by Ta and Tab where Ta forms a sl(2) subalgebra.

[Ta,Tb] = εab
cTc ,

[Ta,Tbc] = 2εda(bTc)d ,

[Tab,Tcd] = −2
(
ηa(cεd)b

e + ηb(cεd)a
e
)
Te .

The invariant bilinear form denoted by "tr" gives

tr[TaTab] = 2ηab ,
tr[TaTbc] = 0 ,

tr[TabTcd] = −4
3ηabηcd + 2(ηacηbd − ηadηbc) .

It is useful to define new generators, Li and Wj , by linearly combining Ta and Tab according to

T0 = 1
2(L1 + L−1) , T1 = 1

2(L1 − L−1) , T2 = L0 ,

T00 = 1
4(W2 +W−2 + 2W0) , T01 = 1

4(W2 −W−2) , T02 = 1
2(W1 +W−1) ,

T11 = 1
4(W2 −W−2 − 2W0) , T12 = 1

2(W1 −W−1) , T22 = W0 .

The generators L and W obey the following commutation relations

[Li,Lj ] = (i− j)Li+j ,
[Li,Wj ] = (2i− j)Wi+ j ,

[Wi,Wj ] = −1
3(i− j)(2i2 + 2j2 − ij − 8)Li+j .

and all the non-zero components of the invariant bilinear form are

tr[L0L0] = 2, tr[L1L−1] = −4 ,

tr[W0W0] = 8
3 , tr[W1W−1] = −4 , tr[W2W−2] = 16 .

The explicit matrix representation of the generators Li and Wj is

L0 =

1 0 0
0 0 0
0 0 −1

 , L1 =

0 0 0
1 0 0
0 1 0

 , L−1 =

0 −2 0
0 0 −2
0 0 0

 ,

W0 =2
3

1 0 0
0 −2 0
0 0 1

 , W1 =2
3

0 0 0
1 0 0
0 −1 0

 , W2 =2

0 0 0
0 0 0
1 0 0

 ,

W−1 =

0 −2 0
1 0 2
0 −1 0

 , W−2 =2

0 0 4
0 0 0
0 0 0

 .
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E.5.3 Special unitary group, SU(n)
The SU(n) group is the group of unitary matrices with determinant 1. To find the generators for some
arbitrary matrix A that fulfills A†A = 1 we will begin by observing that such a matrix can be written
as its Cholesky decomposition:

A = U†U , (E.15)

where U is an upper diagonal matrix. This makes enforcing the determinant equal to one condition a
lot easier then for an arbitrary general n × n matrix A. The diagonal of U will have n − 1 degrees of
freedom since we have an equation of n real variables equal to a constant. Off the diagonal we have two
degrees of freedom per index, for a total of 2 · 1

2 ((n− 1)2 + n− 1). The sum of the degrees of freedom is
then n2 − 1.

SU(2)

SU(2) is a convenient example to start with due to its simplicity and importance in particle physics. The
symmetries of the group play a crucial role when describing electroweak interaction. SU(2) is represented
by matrices of rank 2 and determinant 1. These matrices are also unitary. From the fact that SU(2)
is special, i.e. its group elements have determinant 1, it follows that the trace of the generators of the
group are zero. This can be shown by using the exponential relationship between the generators (Ti),
free parameters θi and the group elements U :

U(θi) = eθ
iTi , (E.16)

and the following identity1
det(eR) = etr [R] , (E.17)

where R is a matrix.
If we substitute R = θiTi we find

det(eθ
iTi) = det(U) = 1 = etr[θiTi].⇒ tr[Ti] = 0 , (E.18)

where we used the linearity property of the trace. We moreover note that the generators Ti are anti-
hermitian. This follows directly from expanding the exponential in equation (E.16) to first order and
compute the product U†U :

U†U ' (1 + θiT †i )(1 + θiTi) = 1 + θi(Ti + T †i ) + ... = 1⇒ Ti = −T †i . (E.19)

Thus we conclude that these generators of SU(2) are both traceless and anti-hermitian.2 In SU(2) the
generators are therefore given of the form

Ti =
[
α β
β∗ −α

]
, (E.20)

where α ∈ R and β ∈ C. By setting α = 0 we find two different kind of generators:

T1 =
[
0 1
1 0

]
, (E.21)

and
T2 =

[
0 −i
i 0

]
. (E.22)

The third and last generator of SU(2) we get by setting β = 0:

T3 =
[
1 0
0 −1

]
. (E.23)

1This identity can be shown by triangulizing R, i.e let R = PTP−1, where T is upper-triangular with eigenvalues
λ1...λn on the diagonal. Then it follows that eT is a diagonal matrix with eλ1 ...eλn on the diagonal. Since the determinant
is the product of eigenvalues it directly follows that det(eT ) = etrT . Finally we observe that R and T have the same
eigenvalues, thus we must have trR = trT . Moreover P eTP−1 = eR (from PTkP−1 = Rk for all k) and therefore
det(eR) = det(eT ) = etrT = etrR and we have proven our identity.

2Particle physicists often tend to choose a different representation of SU(2), where the matrices are hermitian.
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Note that the derived generators are not unique, however they form the smallest non-trivial representation
of the Lie algebra, also called the fundamental representation which is unique for SU(2). The generators
T1, T2 and T3 are called Pauli matrices and are commonly denoted σ1, σ2 and σ3. From now on we stick
to conventional notation and simply let T1 = σ1, T2 = σ2 and T3 = σ3. To derive the Lie algebra
to SU(2) we simply compute the commutators [σ1,σ2], [σ2,σ3] and [σ1,σ3] (the rest follow in the same
manner):

[σ1,σ2] =
[
i 0
0 −i

]
−
[
−i 0
0 i

]
=
[
2i 0
0 −2i

]
= 2iσ3 ,

[σ2,σ3] =
[
0 i
i 0

]
−
[

0 −i
−i 0

]
=
[

0 2i
2i 0

]
= 2iσ1 ,

[σ1,σ3] =
[
0 −1
1 0

]
−
[

0 1
−1 0

]
=
[
0 −2
2 0

]
= 2iσ2 .

We can thus summarize the Lie algebra of SU(2) according to3

[Ta,Tb] = [σa,σb] = 2iεabcσc , (E.24)

where εabc is the completely antisymmetric Levi-Civita symbol and the structure constant(s). From the
Lie algebra of SO(3) and the commutator relation in equation (E.8) we deduce that the structure factors
of SO(3) and SU(2) only differ in sign why we may conclude that SU(2) is isomorphic to SO(3).

SU(3)

We may generalize the discussion in the last section by considering the group SU(3). The matrix U can
be written as:

U =

a d+ iρ e+ iε
0 b f + it
0 0 c

 . (E.25)

We then use the restriction abc = 1 to rewrite (E.25) as a = cr, b = r−1, c = c−2. To get a matrix to plug
into equation (E.1) we just need to evaluate U†U . We will do this and evaluate the partial derivatives
in each of the parameters around the unit matrix (r = c = 1, e = ε = d = ρ = f = t = 0).

U†U = A =

 cr 0 0
d− iρ r−1 0
e− iε f − it c−1

cr d+ iρ e+ iε
0 r−1 f + it
0 0 c−1


=

 c2r2 cr(d+ iρ) cr(e+ iε)
(d− iρ)cr d2 + ρ2 + r−2 (d− iρ)(e+ iε) + r−1(f + it)
(e− iε)cr (e− iε)(d+ iρ) + (f − it)r−1 e2 + ε2 + f2 + t2 + c−2

 .

We continue by evaluating the partial derivatives around the identity matrices, defining V = {r,c,e,ε,d,ρ,f,t}
with A(V0) defining the identity matrix.

T1 = −i
[
∂A

∂r

]
V=V0

= −i

2 0 0
0 −2 0
0 0 0

 , T2 = −i
[
∂A

∂c

]
V=V0

= −i

2 0 0
0 0 0
0 0 −2

 ,

T3 = −i
[
∂A

∂d

]
V=V0

= −i

0 1 0
1 0 0
0 0 0

 , T4 = −i
[
∂A

∂ρ

]
V=V0

= −i

 0 i 0
−i 0 0
0 0 0

 ,

T5 = −i
[
∂A

∂e

]
V=V0

= −i

0 0 1
0 0 0
1 0 0

 , T6 = −i
[
∂A

∂ε

]
V=V0

= −i

 0 0 i
0 0 0
−i 0 0

 ,

T7 = −i
[
∂A

∂f

]
V=V0

= −i

0 0 0
0 0 1
0 1 0

 , T8 = −i
[
∂A

∂t

]
V=V0

= −i

0 0 0
0 0 i
0 −i 0

 .

3One can get rid of the factor 2 in the commutator by normalizing the generators Ti such that Ti = σi
2 . This is

conventionally done to yield a neater expression.
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It is very common to rescale this Lie algebra to another form so that the algebra is more similar to that
of SU(2). Replacing S1, S2 with T1 = 1

2S1 and T2 = 2S2−S1
2
√

3 one gets the Gell-Mann matrices. This
particular set of generators (which clearly spans all of SU(3)) were chosen by the American physicist
Murray Gell-Mann (1929-) because they naturally extend the Pauli matrices from SU(2) to SU(3), which
formed the basis for his model of quarks [45].

SO(2,2)

The Lie group SO(2,2) consisting of all 4×4 matrices with determinant 1 and that forfill the orthogonality
relation X†ηX = η with respect to the Lorentzian metric η = diag(−1,1, 1, 1) is of great importance in
fundamental physics as it is the isometry group of AdS3, the three-dimensional Anti de-Sitter space. In
this thesis we make use of the fact that the Lie algebra of SO(2,2) is isomorphic to that of SO(1,2) ×
SO(1,2) when relating the Chern-Simons gauge action to Einstein-Hilbert action. From the orthogonality
relation for an elementX in SO(2,2) we may derive a condition for the generators of SO(2,2) by expanding
the exponential definition of the group element:

X = exp(θiAi)⇒ X ' 1 + θiAi . (E.26)

For simplicity we consider only real elements X and generators Ai. Plugging the expansion into the
orthogonality relation we find

XT ηX = (1 + θiATi )η(1 + θiAi) = η ⇒ ATi η + ηAi = 0 . (E.27)

Moreover, since SO(2,2) is a special group its generators are traceless. We have therefore two conditions
which have to be satisfied by the generators. We do now perform a block decomposition of our generators
Ai according to

Ai =
[
S T
U V

]
,

where S,T,U and V are real 2 × 2 matrices. Substituting the decomposition into our derived equation
(I.3) we find [

ST UT

TT V T

] [
−1 0
0 1

]
+
[
−1 0
0 1

] [
S T
U V

]
=
[
−ST − S UT − T
−TT + U V T + V

]
=
[
0 0
0 0

]
.

From this relation we may rewrite our generators as follows

Ai =
[
S T
TT V

]
,

and we find that S,T, U and V must obey the following relations
U = TT

V = −V T

S = −ST
.

From these conditions combined with the condition tr [Ai] = 0 it is possible to find six different generators
in a fundamental representation. This should be no surprise since there are six orthogonal planes in 4
dimensions to Lorentz boost and rotate in. We list these generators:

A1 =


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 , A2 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 , A3 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0



A4 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 , A5 =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 , A6 =


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

 .

It is a quite tedious task to compute the commutators [Ai,Aj ] in order to derive the Lie algebra of
SO(2,2) so this is done numerically. However, at this point we are settled for showing the isomorphism
between SO(2,2) and SO(1,2)× SO(1,2), since this result is of importance in our thesis.
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What does it even mean that the algebra of SO(2,2) is isomorphic to that of SO(1,2)× SO(1,2)? In
proper English we have verified the statement if we can show that SO(2,2) can be separated into two
parts, each part having its own subalgebra, in this case that of SO(1,2). To prove this it will be useful to
consider linear combinations of the derived generators Ai, i = 1...6. Consider the cleverly chosen linear
combinations4 

A11 = 1
2 (A1 +A2), A21 = 1

2 (A1 −A2)
A12 = 1

2 (X + Y ), A22 = 1
2 (X − Y )

A13 = 1
2 (P +Q), A23 = 1

2 (P −Q)
,

where X,Y , P and Q are yet unknown 4× 4 matrices and the factor 1
2 a normalization factor. We begin

with the condition [A1i,A2j ] = 0 and construct our unknowns A12, A22, A13 and A23 from it. Starting
off by evaluating [A11,A22] we obtain:

[A11,A22] = 1
4([A1,X] + [A1,− Y ] + [A2,X] + [A2,− Y ]) .

We now make the ”arbitrary” choice X = A3 leading to

[A11,A22] = 1
4([A1,A3] + [A1,− Y ] + [A2,A3] + [A2,− Y ]) = 1

4(−A4 + [A1,− Y ]−A5 + [A2,− Y ]) ,

where we used [A1,A3] = −A4 and [A2,A3] = −A5. In order to achieve [A11,A22] = 0 we must now
choose Y = −A6, due to the fact that [A1,A6] = +A5 and [A2,A6] = +A4. Thus we have X = A3 and
Y = −A6 and deduce A12 = 1

2 (A3−A6) and A22 = 1
2 (A3 +A6). We use the same procedure to solve for

P and Q. Consider

[A13,A22] = 1
4([P,A3] + [P,A6] + [Q,A3] + [Q,A6]) ,

and let P = A4, leading to

1
4([A4,A3] + [A4,A6] + [Q,A3] + [Q,A6]) = 1

4(−A1 +A2 + [Q,A3] + [Q,A6]) ,

and to get [A13, A22] = 0 we therefore have to choose Q = A5:

1
4(−A1 +A2 + [A5,A3] + [A5,A6]) = 1

4(−A1 +A2 +A1 −A2) = 0 .

Thus we have found A13 = 1
2 (A4 + A5) and A23 = 1

2 (A4 − A5). Well, is all work done now?
No, we obviously need to check that all commutators [A1i,A2j ] vanish and not just a few of them.
This is done numerically and amazingly the relation holds for our seemingly non-arbitrary choices of
A11, A12, A13,A21, A22 and A23! Thus we have shown that A1i and A2j can be separated and form their
own subalgebra. By forming the commutators [A1i,A1j ] and [A2i,A2j ] we find

[A1i,A1j ] = −εijkA1k ,

[A2i,A2j ] = −εijkA2k ,

and this is precisely the Lie algebra of SO(1,2) (see section E.5.1). Thus A1i and A2j each constitute a
SO(1,2) algebra.

4the choices of combinations are inspired by Thyssen and Ceulemans Shattered Symmetry: Group Theory From the
Eightfold Way to the Periodic Table, page 307 [46].
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