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Things one might want to study
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Some common features in the examples

▶ There is a time involved. Observations “indexed” with a specific
time.

▶ Possible goals: “Understand” something or make predictions.

▶ My opinion: Prediction is the central goal!
▶ To “understand” something usually means to create some kind of

underlying model.
▶ Any model is a scientific model only if it makes predictions, and it

can only be evaluated in terms of the correctness of its predictions.
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Deterministic and stochastic models

▶ Some models make exact predictions (without uncertainty).
Example: F = ma.

▶ Deterministic models.

▶ In most cases, it is more reasonable to make probabilistic predictions.

▶ All examples above of this type.

▶ Stochastic models = probabilistic models, making probability
predictions.
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Stochastic processes

▶ A stochastic process is a collection of random variables {Xt , t ∈ I}.
▶ The set I is the index set of the process. I most often represents a

set of specific times.

▶ The random variables are defined on a common state space S. This
set represents the possible values the random variables Xt can have.

▶ In our four examples, the state spaces might be
▶ A non-negative count.
▶ A non-negative real number.
▶ A set of species, with descriptions of their relevant genetic sequences

and their relevant traits.
▶ Some description of the amount of infections (and possibly

immunity) in the population.

▶ Some further examples:
▶ A vector of real numbers.
▶ A grid of numbers (representing an image?)
▶ A 3D grid of numbers (representing the stresses in a building?)
▶ An infinte sequence of numbers.
▶ A continuous function from [0, 1] to real numbers.

6 / 23



The Markov property

▶ For us, the index set I will (generally) be some subset of the real
numbers (representing time).

▶ Generally, for any t0 ∈ I , the probabilities for outcomes for Xt , where
t > t0, may depend on the values of Xs for all s ≤ t0.

▶ The process fulfills the Markov property if, for any t0 ∈ I , whenever
Xt0 is known, Xt (with t > t0) is independent of the values for Xs

for all s < t0.

▶ More or less all the stochastic processes we will deal with in this
course will have this property.
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What is a Random Variable?

Intuitive definition:

▶ A variable which has possible values in some state space S. We will
generally assume that the state space is a subset of the real numbers.

▶ Examples of state spaces used in the course:
▶ S = {1, 2, 3, 4}.
▶ S is all positive integers: {1, 2, 3, 4, 5, . . . , }.
▶ S is all non-negative real numbers.

▶ There are probabilities assigned to values and sets of values in the
state space.

▶ We separate between discrete and continuous random variables.

▶ For discrete random variables, we assign a probability to each single
value in the state space.

▶ For continous random variables, we focus instead of assigning
probabilities to intervals of values in the state space.

▶ (We will return shortly with more precise definitions.)
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Main types of stochastic processes in this course

Dobrow Chapters Time (I ) State space (S)
2&3: Discrete Markov chains Discrete Discrete
4: Branching processes Discrete Discrete
5: Markov chain Monte Carlo Discrete Continuous/Discrete
6: Poisson processes Continuous Discrete
7: Continuous-time Markov chains Continuous Discrete
8: Brownian motion Continuous Continuous
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What do we want to do with the models?

▶ Easiest approach: Set up model based on general knowledge, make
predictions from models.

▶ Examples:
▶ Throwing a dice.
▶ Predictions about a card game.
▶ Other types of game predictions.

▶ More useful situation:

1. You have data.
2. You want find a model so that the data could reasonably be

produced by it.
3. You want to use this model for predictions of future observations.

▶ Using data in this way is called inference.
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How to find a model that might have produced the data?

Two (main) alternatives:

▶ Classical inference (or “frequentist” inference):

1. Find estimates for parameters of the model, using the data.
2. To find estimates, use estimators that have desireable properties.
3. Plug the estimates into the models and make predictions from

resulting models.

▶ Bayesian inference:

1. Set up a stochastic model making predictions of observed data and
possible future data.

2. Find the conditional probability for the future predictions given the
values of the observed data.
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Course structure

▶ The Canvas pages!

▶ What is expected of you

▶ What you can expect from the course
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Dobrow Appendices A, B, C, D

▶ These appendices contain material that you (in principle) should
know already.

▶ I strongly recommend that you look through these, at least to find
out how much of them you know and how much and what you don’t
know.

▶ Appendix A: Getting started with R.

▶ Appendix B: Probability review.

▶ Appendix C: Summary of common probability distributions.

▶ Appendix D: Matrix algebra review.
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Random variables

A random variable X with state space S is a real-valued function on S
together with a probability Pr (·) on S . The probability Pr (·) satisfies
▶ 0 ≤ Pr (A) ≤ 1 for all measurable subsets A ⊆ S .

▶ Pr (S) = 1

▶ Pr (∪∞
i=1Ai ) =

∑∞
i=1 Pr (Ai ) when the Ai are disjoint.

▶ These are the Kolmogorov axioms for probability.

▶ Measurable subsets are called events.

▶ What is a measurable subset?
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Measurable subsets

Let S be any set.

▶ A sigma-algebra Ω on S is a set of subsets of S such that
▶ Ω includes S
▶ If A ∈ Ω then Ac = S \ A ∈ Ω.
▶ If A1,A2, . . . ,∈ Ω then ∪∞

i=1Ai ∈ Ω

▶ The measurable sets are those that are in an appropriately defined
sigma-algebra.

▶ What you need to know for this course: When S is finite or
countable, all subsets will be measurable. When S is some interval
of real numbers, there will exist subsets that are not measurable, but
we will not be concerned with them.
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Computer simulation and probability

▶ Note: Many random variables and stochastic processes can be
represented with a computer program which simulates random
output.

▶ The output is then pseudo-random

▶ We may then use

Frequency of computer output ≈ Probability of output

▶ Making this precise yields powerful computational methods, some of
which we will use and/or study in this course.
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Conditional probability

▶ Given events A and B, the conditional probability for A given B is

Pr (A | B) = Pr (A ∩ B)

Pr (B)

▶ Events A and B are independent if Pr (A ∩ B) = Pr (A) Pr (B).

▶ Law of total probability: Let B1, . . . ,Bk be a sequence of events
that partitions S . Then

Pr (A) =
k∑

i=1

Pr (A ∩ Bi ) =
k∑

i=1

Pr (A | Bi ) Pr (Bi ) .

▶ Bayes law for probabilities follows directly from definition above:

Pr (B | A) = Pr (A | B) Pr (B)
Pr (A)
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Notation for discrete probability distributions

▶ For a discrete random variable X we may write Pr (X = x) for
Pr ({x : X = x}).

▶ For a joint distribution for two discrete random variables X and Y
we may write Pr (X = x ,Y = y) for Pr ({x : X = x} ∩ {y : Y = y})
and Pr (X = x | Y = y) for Pr ({x : X = x} | {y : Y = y})

▶ The formulas of the previous overhead can then be written

Pr (X = x | Y = y) =
Pr (X = x ,Y = y)

Pr (Y = y)

Pr (X = x) =
∑
y

Pr (X = x | Y = y) Pr (Y = y)

Pr (Y = y | X = x) =
Pr (X = x | Y = y) Pr (Y = y)

Pr (X = x)
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The generic π-notation

We may use the generic π-notation as a shorthand:

▶ Write π(x) for Pr (X = x), π(x , y) for Pr (X = x ,Y = y) and
π(x | y) for Pr (X = x | Y = y).

▶ The formulas of the previous overhead can then be written

π(x | y) =
π(x , y)

π(y)

π(x) =
∑
y

π(x | y)π(y)

π(y | x) =
π(x | y)π(y)

π(x)

▶ The π(·) notation will be used in the Lecture Notes, but is not used
in Dobrow.
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Conditional densities for continuous distributions

▶ For a continuous random variable X , we will write its density
function as π(x), extending the generic π notation.

▶ If we have a joint distribution for continuous random variables X
and Y , the joint density function may be written π(x , y).

▶ We get formulas like∫
π(x) dx = 1 and

∫
π(x , y) dy = π(x).

▶ We may define the conditional density as

π(y | x) = π(x , y)

π(x)
.

▶ We get similar formulas as for discrete variables:

π(x) =

∫
y

π(x | y)π(y) dy

π(y | x) =
π(x | y)π(y)

π(x)
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Expectation and conditional expectation

▶ Recall, the expectation of a discrete random variable is

E (Y ) =
∑
y

yπ(y)

and of a continuous random variable

E (Y ) =

∫
y

yπ(y) dy .

▶ The conditional expectation in the discrete case is

E (Y | X = x) =
∑
y

yπ(y | x)

and in the continous case

E (Y | X = x) =

∫
y

yπ(y | x) dy .
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Law of total expectation

▶ If X is a discrete random variable, we get that

E (Y ) =
∑
x

E (Y | X = x)π(x).

▶ If X is a continuous random variable we get

E (Y ) =

∫
x

E (Y | X = x)π(x) dx

▶ In both cases this can be written as

E (Y ) = E (E (Y | X )) .
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Law of total variance

▶ Recall that, by definition,

Var (Y ) = E
(
(Y − E (Y ))2

)
= E

(
Y 2

)
− E (Y )2 .

▶ Similarly, we have for the conditional variance

Var (Y | X = x) = EY |X=x

(
(Y − E (Y | X = x))2

)
▶ With these definitions, we can now show the law of total variance:

Var (Y ) = E (Var (Y | X )) + Var (E (Y | X ))
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