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Qutline for today
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Idea of Bayesian inference: Predicting from conditional stochastic
models.

Tossing a coin: The Beta Binomial conjugacy.
The Poisson Gamma conjugacy.
Computations of predictive distributions.

Bayesian inference using discretization or numerical integration.
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Example: Throwing a dice

> If you are trowing a fair six-sided dice, your stochastic model would
be that each outcome has probability 1/6.

» New observations would be independent of old observations: To
make predictions, you don't need data.

» Assume instead the dice may be biased in some way, but you don't
know exactly how.

> A way to make predictions would be to first acquire data, i.e., record
approximately how often each outcome occurs, and use that
information when predicting. Outcomes would be dependent.

» Thus you use a more complex stochastic model that reasonably
models the dependency.

» Given a sequence 1, 5,6, 1,3, 1,1, 2, 1,5, the probability for 1 in
the next throw is then computed as

Pr(1,5,6,1,3,1,1,2,1,5,1)

Pr(1]1,5,6,1,3,1,1,2,1,5) = Pr(1,5,61,31,1,2,1,5)
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Biased coin example
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Figure: The probability of heads at each point in a sequence of observations,
conditioning on the previous observations of heads and tails. The prior used is
that 6, the probability of heads, is either 0.7 or 0.5, with

Pr(6=0.7) =Pr(6 =0.3) = 0.5.
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Reformulation using the underlying parameter 6

» A more common approach: Define the model in terms of a
parameter 6, so that all observations are independent given 6.

» In our case: 6 is a discrete random variable, possible values 0.7 and
0.3:
(0 =0.7) = n(6 = 0.3) = 0.5.

» If y is count of heads in n first throws, and ype, is count of heads in
the next throw:

y | 6 ~ Binomial(n, 6) and Ynew | @ ~ Binomial(1, 6)
> We can use

m(y [ 9)m(9)

}/new‘y 7T}/neW|9 0|Y) and 7r(0|y):
Ze: (y)

7(y|6=0.3)7(6=0.3)
7(y|60=0.7)7(6=0.7)+=(y|0=0.3)7w(6=0.3) *

> We get exactly the same results as above. (Provel!)

» For example, 7(0 = 0.3 | y) =
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General terminology

» The probability distribution for 6, 7(6), is called the prior.

» The probability distribution for the data y given 0, 7(y | ) is
called the likelihood, when it is viewed as a function of 6.

» The probability distribution for 6 given the value of the data y,
(0| y) is called the posterior.
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Finding the posterior for 6 using a uniform prior

» The conditional model (@ | y) (the posterior for 8) can be
computed with Bayes formula. We get

m(y | 0)m(6) m(y | O)m(6)

m0|y) = 7(y) :folﬂ'(y‘e)ﬂ'(e)de
Binomial(y; n, ) A )

fol Binomial(y; n, ) d6 ; fol 0v(1—0)"y do

» Before we continue with computing the integral, we review the
definition of the Beta distribution.
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Review of definition: The Beta distribution

0 has a Beta distribution on [0, 1], with parameters « and 3, if its density has

the form )
71—(0 | CY,,B) = B(Oé 5)0(1_1(1 - 0)5—1
where B(«, 3) is the Beta function defined by
_ H(a)F(B)
B(a, 8) = Tlatp)

where ['(t) is the Gamma function defined by

I'(t):/ x'te ™  dx.
0

Recall that for positive integers, (n) = (n—1)! =1----- (n—1). See for
example Wikipedia for more properties of the Beta distribution, and the Beta
and Gamma functions. We write w(6 | «, 8) = Beta(0; o, 8) for the Beta
density; we then also write 6 ~ Beta(«, 3).
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Biased coin example
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Figure: The probability of heads at each point in a sequence of observations, or
the probability of “success”, conditioning on the previous observations. The
priors used are (0 = 0.7) = (6 = 0.3) = 0.5 (left) and 6 ~ Uniform(0, 1) 9/18



Using a Beta distribution as prior

» Assume the prior is § ~ Beta(a, ).

» The posterior becomes (prove!)
0|y~Beta(a+y,B+n—y)
» The prediction becomes (prove!)

ytao

7-‘—(ynew:]-|y):E(9‘y):m-

» DEFINITION: Given a likelihood model 7(x | ). A conjugate
family of priors to this likelihood is a parametric family of
distributions for 6 so that if the prior is in this family, the
posterior 0 | x is also in the family.
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Biased coin example
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Figure: Left: The prior Beta(33.4,33.4) and the posterior
Beta(33.4 + 11,33.4 + 19) for 6. Right: The probability of heads at each point
in a sequence of observations, conditioning on the previous observations of 11/18



Example: The Poisson-Gamma conjugacy

» Assume m(x | #) = Poisson(x; 6), i.e., that

m(x|0)= 6790—

» Then 7(0 | o, B) = Gamma(0; , 3) where «, 8 are positive
parameters, is a conjugate family. Recall that

Gamma(6; a, 8) = r’f:)@“_l exp(—/30).

» Specifically, we have the posterior

7(0 | x) = Gamma (0;a + x, 3+ 1).
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Poisson-Gamma example

> \We make repeated observations of a Poisson(6) distributed variable
for some 0 > 0. The observed values are x; = 20, xo, = 24, and
x3 = 23. What is the posterior distribution for 6 given this data?

» We first must decide on a prior for 6. In this example we use
7T(9) Xg %
» Note that this is an improper prior; it is a “density” that does not

integrate to 1! However, using such improper priors is possible in
Bayesian statistics.

» We get the posterior after observing x;:
0| x3 ~ Gamma(20,1)
» Using this as prior, we get after also observing x:
0 | x1,xp ~ Gamma(20 + 24,1 + 1)

and similar for the last observation xs.
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Poisson-Gamma example
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Figure: The posteriors after one, two, and three observations, where
x1 = 20, x2 = 24, and x3 = 23. Note how increasing amounts of data leads to a

narrower posterior density.
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Predictive distribution for the Poisson Gamma conjugacy

We have seen: If k | 6 ~ Poisson(6) and § ~ Gamma(c, 8) then
0| k ~ Gamma(a + k, 8+ 1).

Direct computation gives the prior predictive distribution

r = TELOTO) BTt k)
(6 | k) (B4 1)2HkT (o) k!

Note that the positive integer x has a Negative Binomial distribution
with parameters r and p if its probability mass function is

m(x | r,p) = <X +; - 1) (I-pyp = ma - p)p"

We get that the prior predictive is Negative-Binomial(a, 5/(1 + 5)).

Note that we can get the posterior predictive by simply replacing the
« and S of the prior with the corresponding o + k and 8 + 1 of the
posterior.
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Poisson-Gamma example

Figure: Two different ways of predicting the values of ki, given the observations
ki = 20, ko = 24, ks = 23. The pluses represent the Bayesian predictions using
the posterior predictive; the circles represent the Frequentist predictions, using
the Poisson distribution with parameter (20 + 24 4 23)/3 = 22.33.

16/18



Bayesian inference using discretization

If the sample space of 6 is finite, Bayesian inference is quite easy:
» The prior distribution 7(#) is represented by a vector.
> The posterior distribution 7(6 | y) is obtained by termwise

multiplication of the vectors 7(y | 8) and 7(#) and normalizing so
the result sums to 1.

> The prediction m(Vnew | ¥) = [, T(Vnew | 0)7(6 | y) dO simplifies to
taking the sum of the termwise product of the vectors m(Vnew | 6)
and m(0 | y).

» USAGE: Approximate a 1D (and 2D) prior 7(6) by finding 61, ..., 0k
equally spaced in the definition area for 6, compute 7(6;) and
normalize these values so that they sum to 1.

» Check out the R code in the example of Section 1.5 of the
Compendium!
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Bayesian inference using numerical integration

» The prediction we want to make can be expressed as a quotient of
integrals:

T(Ynew | y) = /9 T(Ynew | 0)m(0 | y) dO
A i %
0 0
Jo(

w(y | 0)m(6) do
T(Ynew | 0)m(y | 0)m(6) dO
fg 7(y | 0)m(6) do

» One idea: Compute these integrals using numerical integration.

» Can work well as long as the dimension of ¢ is low (max 2 or 37)
and the functions are well-behaved.

» Check out the R code in the example of Section 1.6 of the
Compendium!
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