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Outline for today

▶ Idea of Bayesian inference: Predicting from conditional stochastic
models.

▶ Tossing a coin: The Beta Binomial conjugacy.

▶ The Poisson Gamma conjugacy.

▶ Computations of predictive distributions.

▶ Bayesian inference using discretization or numerical integration.
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Example: Throwing a dice

▶ If you are trowing a fair six-sided dice, your stochastic model would
be that each outcome has probability 1/6.

▶ New observations would be independent of old observations: To
make predictions, you don’t need data.

▶ Assume instead the dice may be biased in some way, but you don’t
know exactly how.

▶ A way to make predictions would be to first acquire data, i.e., record
approximately how often each outcome occurs, and use that
information when predicting. Outcomes would be dependent.

▶ Thus you use a more complex stochastic model that reasonably
models the dependency.

▶ Given a sequence 1, 5, 6, 1, 3, 1, 1, 2, 1, 5, the probability for 1 in
the next throw is then computed as

Pr (1 | 1, 5, 6, 1, 3, 1, 1, 2, 1, 5) = Pr (1, 5, 6, 1, 3, 1, 1, 2, 1, 5, 1)

Pr (1, 5, 6, 1, 3, 1, 1, 2, 1, 5)
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Biased coin example
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Figure: The probability of heads at each point in a sequence of observations,
conditioning on the previous observations of heads and tails. The prior used is
that θ, the probability of heads, is either 0.7 or 0.5, with
Pr (θ = 0.7) = Pr (θ = 0.3) = 0.5.
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Reformulation using the underlying parameter θ

▶ A more common approach: Define the model in terms of a
parameter θ, so that all observations are independent given θ.

▶ In our case: θ is a discrete random variable, possible values 0.7 and
0.3:

π(θ = 0.7) = π(θ = 0.3) = 0.5.

.

▶ If y is count of heads in n first throws, and ynew is count of heads in
the next throw:

y | θ ∼ Binomial(n, θ) and ynew | θ ∼ Binomial(1, θ)

▶ We can use

π(ynew | y) =
∑
θ

π(ynew | θ)π(θ | y) and π(θ | y) = π(y | θ)π(θ)
π(y)

▶ For example, π(θ = 0.3 | y) = π(y |θ=0.3)π(θ=0.3)
π(y |θ=0.7)π(θ=0.7)+π(y |θ=0.3)π(θ=0.3) .

▶ We get exactly the same results as above. (Prove!)
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General terminology

▶ The probability distribution for θ, π(θ), is called the prior.

▶ The probability distribution for the data y given θ, π(y | θ) is
called the likelihood, when it is viewed as a function of θ.

▶ The probability distribution for θ given the value of the data y ,
π(θ | y) is called the posterior.

6 / 18



Finding the posterior for θ using a uniform prior

▶ The conditional model π(θ | y) (the posterior for θ) can be
computed with Bayes formula. We get

π(θ | y) =
π(y | θ)π(θ)

π(y)
=

π(y | θ)π(θ)∫ 1

0
π(y | θ)π(θ) dθ

=
Binomial(y ; n, θ)∫ 1

0
Binomial(y ; n, θ) dθ

=
θy (1− θ)n−y∫ 1

0
θy (1− θ)n−y dθ

.

▶ Before we continue with computing the integral, we review the
definition of the Beta distribution.
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Review of definition: The Beta distribution

θ has a Beta distribution on [0, 1], with parameters α and β, if its density has
the form

π(θ | α, β) = 1

B(α, β)
θα−1(1− θ)β−1

where B(α, β) is the Beta function defined by

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)

where Γ(t) is the Gamma function defined by

Γ(t) =

∫ ∞

0

x t−1e−x dx .

Recall that for positive integers, Γ(n) = (n − 1)! = 1 · · · · · (n − 1). See for

example Wikipedia for more properties of the Beta distribution, and the Beta

and Gamma functions. We write π(θ | α, β) = Beta(θ;α, β) for the Beta

density; we then also write θ ∼ Beta(α, β).

8 / 18



Biased coin example
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Figure: The probability of heads at each point in a sequence of observations, or
the probability of “success”, conditioning on the previous observations. The
priors used are π(θ = 0.7) = π(θ = 0.3) = 0.5 (left) and θ ∼ Uniform(0, 1)
(right).
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Using a Beta distribution as prior

▶ Assume the prior is θ ∼ Beta(α, β).

▶ The posterior becomes (prove!)

θ | y ∼ Beta(α+ y , β + n − y)

▶ The prediction becomes (prove!)

π(ynew = 1 | y) = E (θ | y) = y + α

n + α+ β
.

▶ DEFINITION: Given a likelihood model π(x | θ). A conjugate
family of priors to this likelihood is a parametric family of
distributions for θ so that if the prior is in this family, the
posterior θ | x is also in the family.
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Biased coin example
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Figure: Left: The prior Beta(33.4, 33.4) and the posterior
Beta(33.4 + 11, 33.4 + 19) for θ. Right: The probability of heads at each point
in a sequence of observations, conditioning on the previous observations of
heads and tails, using the shown prior.
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Example: The Poisson-Gamma conjugacy

▶ Assume π(x | θ) = Poisson(x ; θ), i.e., that

π(x | θ) = e−θ θ
x

x!

▶ Then π(θ | α, β) = Gamma(θ;α, β) where α, β are positive
parameters, is a conjugate family. Recall that

Gamma(θ;α, β) =
βα

Γ(α)
θα−1 exp(−βθ).

▶ Specifically, we have the posterior

π(θ | x) = Gamma (θ;α+ x , β + 1) .
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Poisson-Gamma example

▶ We make repeated observations of a Poisson(θ) distributed variable
for some θ > 0. The observed values are x1 = 20, x2 = 24, and
x3 = 23. What is the posterior distribution for θ given this data?

▶ We first must decide on a prior for θ. In this example we use
π(θ) ∝θ

1
θ .

▶ Note that this is an improper prior; it is a “density” that does not
integrate to 1! However, using such improper priors is possible in
Bayesian statistics.

▶ We get the posterior after observing x1:

θ | x1 ∼ Gamma(20, 1)

▶ Using this as prior, we get after also observing x2:

θ | x1, x2 ∼ Gamma(20 + 24, 1 + 1)

and similar for the last observation x3.
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Poisson-Gamma example
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Figure: The posteriors after one, two, and three observations, where
x1 = 20, x2 = 24, and x3 = 23. Note how increasing amounts of data leads to a
narrower posterior density.
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Predictive distribution for the Poisson Gamma conjugacy

▶ We have seen: If k | θ ∼ Poisson(θ) and θ ∼ Gamma(α, β) then
θ | k ∼ Gamma(α+ k , β + 1).

▶ Direct computation gives the prior predictive distribution

π(k) =
π(k | θ)π(θ)
π(θ | k)

=
βαΓ(α+ k)

(β + 1)α+kΓ(α)k!

▶ Note that the positive integer x has a Negative Binomial distribution
with parameters r and p if its probability mass function is

π(x | r , p) =
(
x + r − 1

x

)
· (1− p)xpr =

Γ(x + r)

Γ(x + 1)Γ(r)
(1− p)xpr

▶ We get that the prior predictive is Negative-Binomial(α, β/(1 + β)).

▶ Note that we can get the posterior predictive by simply replacing the
α and β of the prior with the corresponding α+ k and β + 1 of the
posterior.
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Poisson-Gamma example
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Figure: Two different ways of predicting the values of k4, given the observations
k1 = 20, k2 = 24, k3 = 23. The pluses represent the Bayesian predictions using
the posterior predictive; the circles represent the Frequentist predictions, using
the Poisson distribution with parameter (20 + 24 + 23)/3 = 22.33.
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Bayesian inference using discretization

If the sample space of θ is finite, Bayesian inference is quite easy:

▶ The prior distribution π(θ) is represented by a vector.

▶ The posterior distribution π(θ | y) is obtained by termwise
multiplication of the vectors π(y | θ) and π(θ) and normalizing so
the result sums to 1.

▶ The prediction π(ynew | y) =
∫
θ
π(ynew | θ)π(θ | y) dθ simplifies to

taking the sum of the termwise product of the vectors π(ynew | θ)
and π(θ | y).

▶ USAGE: Approximate a 1D (and 2D) prior π(θ) by finding θ1, . . . , θk
equally spaced in the definition area for θ, compute π(θi ) and
normalize these values so that they sum to 1.

▶ Check out the R code in the example of Section 1.5 of the
Compendium!
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Bayesian inference using numerical integration

▶ The prediction we want to make can be expressed as a quotient of
integrals:

π(ynew | y) =

∫
θ

π(ynew | θ)π(θ | y) dθ

=

∫
θ

π(ynew | θ) π(y | θ)π(θ)∫
θ
π(y | θ)π(θ) dθ

dθ

=

∫
θ
π(ynew | θ)π(y | θ)π(θ) dθ∫

θ
π(y | θ)π(θ) dθ

▶ One idea: Compute these integrals using numerical integration.

▶ Can work well as long as the dimension of θ is low (max 2 or 3?)
and the functions are well-behaved.

▶ Check out the R code in the example of Section 1.6 of the
Compendium!
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