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Some words you need to learn about Markov chains

MARKOV CHAIN, STATE SPACE, TIME-HOMOGENEOUS,
TRANSITION MATRIX, STOCHASTIC MATRIX, LIMITING
DISTRIBUTION, STATIONARY DISTRIBUTION, POSITIVE MATRIX,
REGULAR TRANSITION MATRIX, RANDOM WALK, TRANSITION
GRAPH, WEIGHTED GRAPH, ACCESSIBLE STATES,
COMMUNICATING STATES, EQUIVALENCE RELATION,
COMMUNICATION CLASSES, IRREDUCIBILITY, RECURRENT
STATES, TRANSIENT STATES, CLOSED COMMUNICATION
CLASSES, CANONICAL DECOMPOSITION, IRREDUCIBLE MARKOV
CHAINS, POSITIVE RECURRENT STATES, NULL RECURRENT
STATES, PERIODICITY, APERIODIC, ERGODIC MARKOV CHAINS,
TIME REVERSIBILITY, DETAILED BALANCE CONDITION,
ABSORBING STATES, ABSORBING MARKOV CHAINS,
FUNDAMENTAL MATRIX, ...
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Overview

» Definition and examples of (discrete time, discrete state-space)
Markov chains.

» Basic computations

» Investigating long term evolution using powers of matrices or
simulation

» Induction

» Limiting and stationary distributions

3/15



v

Consider a game: At each time step / you are at positions 1, 2, or 3.
We write X; =1, Xi =2, 0or X;=3fori=0,1,2,....

At each time step, you move to a higher number (or from 3 to 1)
with probability p, or stay put with probability 1 — p.

The transitions can be specified with
Pr(Xis1=1|X;=1)=1—p Pr(Ximi=2|Xi=1)=p Pr(Xis1 =3 Xi=1)=0
Pr(X;+1:1\X,-:2):O PF(X[+1:2‘X,':2):l—p Pr(X;+1:3\ ,:2):p
Pr(X,-+1:1\X,-:3):p PI’(X,'+1:2‘X,':3):0 Pr(X,-+1:3\X,-:3):17;:
A more succinct specification is with the transition matrix:
1-p p 0
P = 0 1-p p

p 0 1I-p

The sequence Xy, X1, Xa, ..., is an example of a Markov chain (see
definition on next overhead).
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Definition of a Markov chain

Let S be a discrete set (not necessarily finite), called the state space. A
Markov chain is a sequence of random variables Xy, X, ... taking values
in S, with the property

7T(Xn+1 | XQ,Xl,. .. ,Xn) = 7T(X,,+1 | X,,)

foralln>1.
» The chain is time-homogeneous if, for all n > 0,

T(Xns1 | Xn) = m(X1 | Xo)

(We will generally assume this).

» The transition matrix is defined with
P,J:T((Xlzj‘XO:I)

> A stochastic matrix is a real matrix P with non-negative entries,
satisfying P1f = 1%, where 1 is a row vector consisting only of 1's.

» All transition matrices are stochastic matrices, and all stochastic

matrices can be used as transition matrices.
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Basic computations

» If v is a vector describing the probability distribution of states at
stage k, then vP is the vector describing the probability distribution
of states at stage k + 1.

» If v is a vector describing the distribution of states at stage k, then
vP" is the vector describing the distribution of states at stage k + n.

» Thus the probability to go from state / to state j in n steps is given
by (P");. (We write P,j’)

» Chapman-Kolmogorov relationship Pg*'" = Py Py; is derived
from pmtn = pmpn,

» The probability of being at i; at stage n;, and then at i, in stage no,
and so on up to ik at stage ng, with ny < ny < --- < ng, is given by
the product of corresponding entries of powers of the transition
matrix:

(P)

(PoP™);, (P™™™),. (PP

where pg is the distribution of states for Xj.
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Long term evolution: Computing powers of P

When the number of states in S is finite and not too big, we can
investigate long term behaviour by computing P” for large n.

» In some cases, the powers stabilize into a matrix where all rows are
identical.

» It may also stabilize without identical rows: Try out P =/, the
identity matrix!

» Sometimes it does not stabilize: Try out, for example

01 0
P=10 0 1
1 0 0
» Note that if P is block-diagonal, it may combine several behaviours:
P 0 ... O P 0 ... O
0o P ... 0 0o P ... O
If P= . then P" = | | .
: : .0 : : .0
0 0 ... Py 0 o ... P
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Long term evolution: Using simulation

If S is large or infinite, we may instead investigate long term behaviour
using simulation:
Repeat many times:
» Draw xg according to m(xp).
» For i in 1 through n:
> Draw x; according to 7(x; | xi—1).

Use the distribution of the x, to approximate the distribution of X,.
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Proving stuff using induction

1. Formulate a statement S(n) depending on a non-negative integer n.
2. Prove 5(0).
3. Prove that if S(n) is true, then S(n+ 1) is also true.

With this, one may conclude that S(n) is true for all non-negative n.
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Example of induction: 2-state Markov chain

» Any 2-state Markov chain has transition matrix (1 ; P P > for

some0<p<l1l,0<g<l
» We can prove by induction that, for any n > 0,

(af 22 =5l 2+ (5 J)ememor]

» We can use this to study what happens with the Markov chain when
n grows.
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Limiting distribution

> A limiting distribution for a Markov chain with transition matrix P is
a probability vector v such that

Jim (P = v

for all i and j.

» Equivalent formulation: The limit lim,_,.(P");; exists and does not
depend on i.

» Equivalent formulation: lim,_ ., P" is a stochastic matrix with all
rows identical.

» A Markov chain has either no or one unique limiting distribution.
We have seen examples of both cases in examples.

» If a limiting distribution exists, its probabilities correspond to the
proportion of time steps the chain spends at each state.
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Stationary distribution

» A stationary distribution for a Markov chain is a distribution that is
unchanged when applying one step of the Markov chain.

» If P is the transition matrix, then a probability vector v represents a
stationary distribution if and only if

vP =v

» A Markov chain can have zero, one, or many stationary distributions.

» Limiting distributions are stationary distributions (but not necessarily
vice versa).
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Regular transition matrices

2

>

A stochastic matrix P is positive if all entries are positive. A
stochastic matrix P is regular if P" is positive for some n > 0.

Limit Theorem for Regular Markov Chains: If the transition
matrix P is regular, the limiting distribution exists. There are no
other stationary distributions. The limiting distribution is positive,
i.e., all its probabilities are positive.
Proof in section 3:10 (not part of exam material): One first proves
that regular Markov chains are ergodic (i.e., irreducible, aperiodic,
and all states have finite return times) and then that ergodic Markov
chains have a limiting distribution. Two proofs are given:

» A proof using coupling

» A proof using linear algebra
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Finding a stationary distribution

» Find the v satisfying vP = v by
» solving the linear system vP = v.
» guessing at a v, and showing that vP = v.
> computing an eigenvector for the transponse P’ belonging to the
eigenvalue 1.
» Having found a v satisfying vP = v; if the transition matrix P is
regular, we know v represents the unique limiting distribution and
the unique stationary distribution.
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Example: Random walks on undirected graphs

» An undirected graph consists of nodes and undirected edges
connecting them. (An edge may connect a node with itself).

» An undirected graph defines a random walk Markov chain by, at
every time step, following one of the edges out of a node, with equal
probability. (You also need a starting distribution).

» When the graph is finite, show that the vector u is a stationary
distribution, where u; = deg(i)/S, where deg(i) is the number of
edges going into edge / and S is the sum of all weights, counting
weights on edges between different nodes twice.

» Generalization: A weighted undirected graph is a graph with a
positive weight at any edge between i and j for all / and .

» Define the Markov chain by choosing the next node with
probabilities according to the weights.

» Show that when the graph is finite, the vector u is a stationary
distribution, where u; = w(i)/S, where w(/) is the sum of the
weights of the edges going into 7, and e is the total sum of all
weights, counted as above.
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